Haven Road, Exeter

Energy and Sustainability Statement

Cudd Bentley Consulting

Cudd Bentley Consulting Ltd.

Ascot Office: Ashurst Manor, Church Lane, Sunninghill, Berkshire, SL5 7DD Tel: (01344) 628821

London Office; 12 Devonshire Street, London, W1G 7AB Tel (0203) 393 6446

Solihull Office; Regus, Central Boulevard, Blythe Valley Business Park, Solihull, West Midlands, B90 8AG Tel (0121) 711 4343

www.cuddbentley.co.uk Document Ref: 6018-CBC-HM-RP-S-003-P02 Creation date: June 2022 Revision: 002

Revision Date: 13/07/22

Version	Date	Details	Prepared By	Approved By
1	04/07/2022	Draft for Comment	HM	SP
2	13/07/2022	Final Version	HM	SP

Contents

1.0		Executive Summary4
2.0	1	Introduction5
3.0	1	Drivers of Sustainability6
4.0	1	National Policy
5.0	1	Local Policy12
6.0	1	Energy Usage and Carbon Emissions20
e	5.1	Policy Review
6	5.2	Development Sustainability Features21
6	5.3 9	Summary
7.0	1	Water Consumption
7	7.1	Policy Review
7	7.2	Development Sustainability Features
7	7.3 \$	Summary
8.0	1	Transport
8	3.1	Policy Preview
٤	3.2	Development Sustainability Features
٤	3.3 9	Summary
9.0	1	Sustainable Design
ç	9.1	Policy Review
ç	9.2	Development Sustainability Features
ç	9.3 9	Summary
10.	0	Construction Site Management
1	10.1	L Policy Review
1	10.2	2 Development Sustainability Features
1	10.3	3 Summary
11.	0	Flood Risk
1	11.1	L Policy Review
1	11.2	2 Development Sustainability Features

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 2 of 48

11.3 Summary	
12.0 Noise	
12.1 Policy Review	
12.2 Development Sustainability Featu	res40
12.2 Summary	
13.0 Ecology	
13.1 Policy Review	
13.2 Summary	
Appendix A - Flood Risk Map	
Appendix B – CHP Search	
Appendix C – Wind Map	45
Appendix D – Energy Calculations	
Appendix E – Sample SAP Report	
Appendix F – DHN Correspondence	

1.0 Executive Summary

This report considers the energy and sustainability measures to be incorporated within the proposed development on Haven Road, Exeter. This document reviews the requirements at both national and local level, as set out in the National Planning Policy Framework, Exeter City Council Core Strategy (Adopted February 2012) and Exeter City Council Local Plan Review (1995 – 2011) (Saved Policies).

The recommended sustainability features for the development, resulting from a Part L compliant model, will allow for a 22.39% carbon reduction from a base Part L 2013 compliance build. The sustainability features will allow for a 122.07 tonnes reduction in annual CO₂ emissions. This complies with the carbon reduction target set out by Exeter Council. The proposed energy strategy is compliant with the local policy requirements as use of 56.58 kWp PV has been proposed for the development to achieve the overall carbon reduction. The energy and carbon savings are to be achieved through passive design, energy efficient measures incorporating design features such as energy efficient lighting, submetering of relevant areas, upgrading of 'U' values and occupancy sensing in relative areas, as well as the incorporation of Air Source Heat Pump to supply hot water to the residential units.

To reduce the energy demand of the development as well as help to conserve water resources within the local area, it is anticipated that the fit out works will provide for sanitary fittings which will be water efficient through measures such as dual flush toilets and low flow taps.

The development is located in Exeter, and the site is in close proximity to the A377 Road. The development is located within walking distance from the nearest bus stop. The proposed development is near the national cycle network. It can also be noted that some leisure as well as a number of primary amenities including food outlets are available nearby.

Incorporating sustainability measures allows the development to be deemed sustainable in conjunction with local and national policies.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 4 of 48

2.0 Introduction

This report has been prepared by Cudd Bentley Consulting Ltd, to investigate the issues of energy and sustainability surrounding the Haven Road development in Exeter. This development located on Haven Road is a mixed use Residential and Commercial Development as shown in Figure 2.1.

Figure 2.1 Site Location Plan

Government policies now require significant energy reductions from proposed buildings. Building a Greener Future sets a planned trajectory outlined via Part L 2013 of the Building Regulations. These commitments have been the key focus point in addressing policies and strategies to reduce energy use and carbon emissions through energy efficiency and low or zero carbon technologies (LZC).

The recommended strategy takes into consideration the site layout and requirements for the building to produce a design that incorporates the most appropriate technologies available to the site that are commercially viable, whilst targeting compliance with all policies applicable to this development.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 5 of 48

3.0 Drivers of Sustainability

The term Sustainable Development, is defined by the Department for the Environment, Food and Rural Affairs as:

'... making sure people throughout the world can satisfy their basic needs now, while making sure that future generations can also look forward to the same quality of life. It recognises that the "three pillars" – economy, society and environment – are interconnected.'

To achieve this objective of sustainable development in any industry, sector strict regulations have been put in place that have filtered down through EU Directives from the European Climate Change Programme, to National UK Acts such as the Climate Change Act 2008, to Local Policy in the form of Core

Strategies. However, there are larger drivers behind the concept of sustainable development.

Kyoto Protocol

In 1997, the Kyoto Protocol was adopted as part of the United Nations Framework Convention on Climate Change, to which the UK is a signatory. The key feature of the protocol was the binding targets that were set for industrialised countries to reduce their Green House Gas emissions by 12.5% below 1990 levels by 2008-2012.

Cancun Agreements

Since the initial adoption of the Kyoto Protocol, extensive research has been put forward as to the causes and markers of climate change from the Intergovernmental Panel on Climate Change, which has led to new targets and objectives being made. In 2012, the international community met to discuss new directions for responding to climate change by adopting new agreements. The key objectives of the Cancun Agreements are:

- Establish clear objectives for reducing human-generated greenhouse gas emissions over time to keep the global average temperature rise below two degrees;
- Mobilise the development and transfer of clean technology to boost efforts to address climate change, getting it to the right place at the right time and for the best effect;
- Assist the particularly vulnerable people in the world to adapt to the inevitable impacts of climate change;
- Protect the world's forests, which are a major repository of carbon;
- Establish effective institutions and systems which will ensure these objectives are implemented successfully.

COP21: Paris Global Climate Agreement

In December 2015, a global climate deal was reached in a summit involving all of the world's nations. The targets of this aimed principally to curb the dangerous levels of climate change and drive an increase low-carbon infrastructure investment. Numerous organisations and corporations also committed to helping create a greener future by making their own pledges through the course of the summit. The key elements of the agreement are:

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 6 of 48

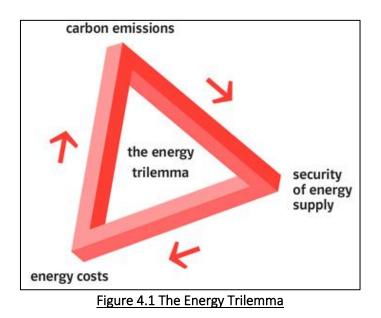
- To keep global temperatures "well below" 2.0°C above pre-industrial times and "endeavour to limit" them even more, to 1.5C
- To limit the amount of greenhouse gases emitted by human activity to the same levels that trees, soil and oceans can absorb naturally, beginning at some point between 2050 and 2100
- To review each country's contribution to cutting emissions every five years so they scale up to the challenge
- For rich countries to help poorer nations by providing "climate finance" to adapt to climate change and switch to renewable energy.

BRE's COP21 Climate Pledge (December 2015)

"We commit to continue to drive best practice and carbon reduction, as we have through the use of BREEAM for the past 25 years. By reaching over 9,000 BREEAM rated buildings we predict emissions savings will be in excess of 900,000 tonnes of CO₂, compared to regulatory minimum performance requirements, by 2020. Saving not only carbon, but bringing wider benefits to both the owner and occupiers."

4.0 National Policy

National Planning Policy


An effective planning system is required to contribute to achieving sustainable development. The **National Planning Policy Framework** (NPPF), 2021, outlines what the government deems as sustainable development in England.

Sustainable development is defined as having the following three overarching objectives which are interdependent and need to be pursued in mutually supportive ways: an economic objective, a social objective, and an environmental objective.

- 1. Economic objective to help build a strong, responsive and competitive economy, by ensuring that sufficient land of the right types is available in the right places and at the right time to support growth, innovation and improved productivity; and by identifying and coordinating the provision of infrastructure;
- 2. Social objective to support strong, vibrant and healthy communities, by ensuring that a sufficient number and range of homes can be provided to meet the needs of present and future generations; and by fostering a well-designed and safe built environment, with accessible services and open spaces that reflect current and future needs and support communities' health, social and cultural well-being; and
- Environmental objective to contribute to protecting and enhancing our natural, built and historic environment; including making effective use of land, helping to improve biodiversity, using natural resources prudently, minimising waste and pollution, and mitigating and adapting to climate change, including moving to a low carbon economy.

The above objectives can be described as an energy trilemma, this is demonstrated in Figure 4.1 below. Each dimension is dependent on each other and sustainable development proposals should adhere to each role. This energy statement shall ensure the proposed Development is one that contributes economically, socially and environmentally in accordance with the NPPF, 2021.

Guidance has been followed from the (NPPF), 2021, to provide an energy strategy which reduces energy use and carbon emissions, in line with best practice. This will provide a balanced scheme which focuses on optimal use of non-renewable resources (energy efficiency measures) whilst providing a renewable energy strategy best suited to the sites and their building uses. Below are some key extracts relevant to the development from Chapter fourteen 'Meeting the Challenge of Climate Change, Flooding & Coastal Change':

Paragraph 20

Strategic policies should set out an overall strategy for the pattern, scale and design quality of places, and make sufficient provision for:

• infrastructure for transport, telecommunications, security, waste management, water supply, wastewater, flood risk and coastal change management, and the provision of minerals and energy (including heat);

Paragraph 154

Plans should take a proactive approach to mitigating and adapting to climate change, taking into account the longterm implications for flood risk, coastal change, water supply, biodiversity and landscapes, and the risk of overheating from rising temperatures. Policies should support appropriate measures to ensure the future resilience of communities and infrastructure to climate change impacts, such as providing space for physical protection measures, or making provision for the possible future relocation of vulnerable development and infrastructure.

Paragraph 155

New development should be planned for in ways that:

a. avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 9 of 48

can be managed through suitable adaptation measures, including through the planning of green infrastructure; and

b. can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.

Paragraph 151

To help increase the use and supply of renewable and low carbon energy and heat, plans should:

- provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);
- b. consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and
- c. identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for locating potential heat customers and suppliers.

Paragraph 156

Local planning authorities should support community-led initiatives for renewable and low carbon energy, including developments outside areas identified in local plans or other strategic policies that are being taken forward through neighbourhood planning.

Paragraph 157

In determining planning applications, local planning authorities should expect new development to:

- a. comply with any development plan policies on local requirements for decentralised energy supply unless it can be demonstrated by the applicant, having regard to the type of development involved and its design, that this is not feasible or viable; and
- b. take account of landform, layout, building orientation, massing and landscaping to minimise energy consumption.

Paragraph 158

When determining planning applications for renewable and low carbon development, local planning authorities should:

- a. not require applicants to demonstrate the overall need for renewable or low carbon energy, and recognise that even small-scale projects provide a valuable contribution to cutting greenhouse gas emissions; and
- b. approve the application if its impacts are (or can be made) acceptable. Once suitable areas for renewable and low carbon energy have been identified in plans, local planning authorities should expect subsequent applications for commercial scale projects outside these areas to demonstrate that the proposed location meets the criteria used in identifying suitable areas.

Paragraph 185

Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development. In doing so they should:

- a) mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development – and avoid noise giving rise to significant adverse impacts on health and the quality of life65;
- b) identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason; and
- c) limit the impact of light pollution from artificial light on local amenity, intrinsically dark landscapes and nature conservation.

5.0 Local Policy

This section aims to highlight guidance available and the minimum requirements at local level from Exeter City Council Core Strategy (Adopted February 2012) and Exeter City Council Local Plan Review (1995 – 2011) (Saved Policies), which states the Council's vision, spatial strategy and policies for the future development of the area.

Exeter City Council Core Strategy (Adopted February 2012)

Policy CP1

Over the plan period 2006-2026 provision is made within the city, for:

- around 60 hectares of employment land
- at least 12,000 dwellings
- up to 40,000 sq metres net retail floorspace.

The spatial strategy identifies the opportunities for Exeter to grow within its environmental limits. Development will be guided to the most sustainable locations, recognising the contribution to be made to growth by the existing urban area, particularly the City Centre, and ensuring that the necessary infrastructure, including low and zero carbon energy, transport and green infrastructure, is in place to allow for sustainable urban extensions to the east and south west of the city.

Proposals are based on:

- i. around 4,900 dwellings and 20 hectares of employment land that are completed or have planning permission.
- vi. bringing forward development in the rest of the city to accommodate around 1,800 dwellings.

Policy CP2

The development of around 40 hectares of employment land and associated infrastructure (in addition to around 20 hectares comprising completions and permissions at 1 April 2010) is proposed, as follows:

- up to 30,000 square metres of office floorspace on about 1.5 hectares, as part of mixed development in the City Centre;
- around 5.5 hectares in the Pinhoe area;
- about 21 hectares to the east of the outer bypass: comprising 5 hectares on the fringes of Exeter Business Park in the Hill Barton area, and 16 hectares south of the A379 in the Newcourt area; and
- about 15 hectares to the south west of the city, in the Matford area (subject to an acceptable flood risk assessment, ecological survey and habitat regulations assessment).

The release of employment allocations for other uses will only be acceptable where it can be demonstrated that development for an alternative use represents an opportunity that would create significant economic benefits for the city and the Travel to Work Area.

Policy CP3

The development of at least 12,000 dwellings is proposed as follows:

Completions 2006-2010

2,687

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 12 of 48

Planning Permissions	2,224
Permissions subject to S106 agreement	26
Identified sites within the urban area	977
Regeneration Areas	1,048
Newcourt	2,300
Monkerton/Hill Barton	2,500
Alphington	500
Total	12,262

Policy CP4

Residential development should achieve the highest appropriate density compatible with the protection of heritage assets, local amenities, the character and quality of the local environment and the safety and convenience of the local and trunk road network.

Policy CP5

The supply of housing should meet the needs of all members of the community such that:

- all major developments (10 or more dwellings) should include a mix of housing informed by context, local housing need and the most up to date Housing Market Assessment;
- specialist housing, such as wheelchair accessible housing, sheltered housing, residential care homes, 'extra care' housing and continuing care retirement communities should be provided as part of mixed communities, where possible, in accessible locations close to facilities;
- all housing developments should be designed to meet Lifetime Homes Standards where feasible and practical; and
- purpose built student accommodation should be provided to meet the housing need.

Policy CP9

Comprehensive strategic transport measures to accommodate the additional development proposed for the city and adjoining areas shall include:

- a step change in the quality, capacity and environmental performance of public transport, especially between the City Centre and proposed developments adjoining the city to the east in East Devon and to the south west in Teignbridge;
- additional Park and Ride sites around the city including Ide interchange;
- improvements to the strategic road infrastructure including key junctions on the M5, outer bypass and the Alphington Road corridor;
- new rail halts at Hill Barton and Newcourt on the Exeter to Exmouth line and at Matford on the Exeter to Plymouth line;
- demand management measures; and
- improvements to facilities for pedestrians and cyclists.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 13 of 48

The contributions necessary to ensure the delivery of transport infrastructure will be secured through the application of Policy CP18.

Policy CP11

Development should be located and designed so as to minimise and if necessary, mitigate against environmental impacts. Within the Air Quality Management Area shown on the following map, measures to reduce pollution and meet air quality objectives, that are proposed by the Local Transport Plan and the Air Quality Action Plan, will be brought forward.

Policy CP12

The spatial strategy reflects the precautionary approach to flooding and flood risk. Site allocations will be determined by applying a risk-based search sequence, utilising the sequential test and, where appropriate, the exception test, in accordance with national policy guidance. The Exeter Strategic Flood Risk Assessment will be used to ensure that development avoids areas of higher risk. All development proposals must mitigate against flood risk utilising SUDS where feasible and practical.

Policy CP13

Decentralised Energy Networks will be developed and brought forward. New development (either new build or conversion) with a floorspace of at least 1,000 square metres, or comprising ten or more dwellings, will be required to connect to any existing, or proposed, Decentralised Energy Network in the locality to bring forward low and zero carbon energy supply and distribution. Otherwise, it will be necessary to demonstrate that it would not be viable or feasible to do so. Where this is the case, alternative solutions that would result in the same or better carbon reduction must be explored and implemented, unless it can be demonstrated that they would not be viable or feasible.

Policy CP14

New development (either new build or conversion) with a floorspace of at least 1,000 sq. metres, or comprising ten or more dwellings, will be required to use decentralised and renewable or low carbon energy sources, to cut predicted CO2 emissions by the equivalent of at least 10% over and above those required to meet the building regulations current at the time of building regulations approval, unless it can be demonstrated that it would not be viable or feasible to do so.

Policy CP15

Proposals for development are expected to demonstrate how sustainable design and construction methods will be incorporated. All development must be resilient to climate change (particularly summer overheating) and optimise energy and water efficiency through appropriate design, insulation, layout, orientation, landscaping and materials, and by using technologies that reduce carbon emissions.

Residential development will be required to achieve the above (Para 10.29) Code for Sustainable Homes Level (overall performance across the code categories and complying with minimum standards).

All non-domestic development will be required to achieve BREEAM 'Very Good' standards increasing to 'Excellent' standards from 2013. Non-domestic buildings are expected to be zero carbon from 2019.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 14 of 48

Policy CP16

The strategic green infrastructure (GI) network is shown on the key diagram. The Exeter GI network has been identified to protect and enhance current environmental assets and local identity and to provide a framework for sustainable new development.

Opportunities to provide green corridors, open space and allotments, to enhance cycling and walking opportunities, to link existing habitats, to incorporate environmental assets and to integrate biodiversity, proposed by the Exeter Green Infrastructure Strategy, will be secured through partnership working, direct implementation and the application of Policy CP18 (see Section 11).

Policy CP17

All proposals for development will exhibit a high standard of sustainable design that is resilient to climate change and complements or enhances Exeter's character, local identity and cultural diversity.

Development in the City Centre and Grecian Regeneration Area will:

- enhance the city's unique historic townscape quality;
- protect the integrity of the city wall and contribute positively to the historic character of the Central and Southernhay and Friars Conservation Areas;
- create places that encourage social interaction, utilising public art as an intrinsic component of a high quality public realm;
- enhance and expand the city's retail function to improve Exeter's draw as a regional shopping centre;
- include residential development in a mix of uses that encourage vitality and establish a safe and secure environment;
- create a City Centre that is vital and viable and presents a positive experience to the visitor;
- enhance the biodiversity of the City Centre and improve the links to the green infrastructure network;
- contribute to the establishment of a decentralised energy network.

Policy CP18

New development must be supported by appropriate infrastructure provided in a timely manner. The City Council will continue to work in partnership with infrastructure providers and other delivery agencies to keep an up to date infrastructure delivery plan that will enable proposals, in accordance with the spatial strategy, to be brought forward.

Developer contributions will be sought to ensure that the necessary physical, social, economic and green infrastructure is in place to deliver development. Contributions will be used to mitigate the adverse impacts of development (including any cumulative impact). Where appropriate, contributions will be used to facilitate the infrastructure needed to support sustainable development.

Exeter City Council Local Plan Review 1995 – 2011 (Saved Policies)

Policy AP1

Development should be designed and located to raise the quality of the urban and natural environment and reduce the need for car travel. Proposals should be located where safe and convenient access by public transport, walking and cycling is available or can be provided.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 15 of 48

Policy H1

Proposals for housing development will be assessed against the following search sequence:

- i. Previously-developed land, conversions and infill within the urban areas;
- ii. Previously-developed land on the urban fringe within public transport corridors;
- iii. Greenfield land through sustainable urban extensions within public transport corridors.

Policy H2

Priority will be given to meeting housing needs on previously-developed land by applying the search sequence set out in policy h1 and by permitting residential development at the highest density that can be achieved without detriment to local amenity, the character and quality of the local environment and the safety of local roads, whilst having regard to the need to provide a variety of housing provision which is accessible to a range of employment, shopping, education, health and social care, leisure and community facilities. Developers should consider:

- a) The provision of semi-detached and terraced housing and flats;
- b) The development of infill and corner sites;
- c) Development in the city centre and in areas which are well served by public transport;
- d) Development of sites in the core area of the city centre without provision for motor vehicle parking but with secure cycle parking facilities, car parking provision for disabled people and space for deliveries;
- e) The conversion of buildings to flats or bedsits;
- f) The conversion to residential use of buildings, which are vacant, under-used or in poor condition, including historic buildings, offices and vacant floorspace above offices and shops;
- g) The development of new office buildings which are designed to enable subsequent conversion to residential use;
- h) The provision of residential accommodation in upper floors of retail and office schemes.

Policy S5

Proposals for food and drink (class A3), including hot food takeaways, will be permitted, subject to policy s3 within:

- a) The city centre, district centres and local centres;
- b) Other commercial areas with active street frontage uses;
- c) Areas of cultural or leisure use, public amenities and tourist attractions;
- d) Purpose built cultural, leisure, retail or mixed use developments,

Provided that:

- i. The proposal will not harm the amenities of nearby residents by virtue of noise, smell, litter or late night activity;
- In high street, cathedral yard, cathedral close, gandy street, castle street and west street, change of use to food and drink (class A3) will only be permitted subject to a condition preventing use as a hot food takeaway;
- iii. The proposal will not create or increase the potential for public disorder and crime or reduce the perceived attractiveness of the centre;
- iv. a financial contribution will be sought through a planning obligation to measures which would improve community safety, where this would enable the development to be permitted.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 16 of 48

Policy T1

Development should facilitate the most sustainable and environmentally acceptable modes of transport, having regard to the following hierarchy:

- 1. Pedestrians
- 2. People with mobility problems
- 3. Cyclists
- 4. Public transport users
- 5. Servicing traffic
- 6. Taxi users
- 7. Coach borne visitors
- 8. Powered two wheelers
- 9. Car borne shoppers
- 10. Car borne commercial/ business users
- 11. Car borne visitors
- 12. Car borne commuters.

Policy T2

In accordance with the accessibility criteria set out in schedule 1: residential development should be located within walking distance of a food shop and a primary school and should be accessible by bus or rail to employment, convenience and comparison shopping, secondary and tertiary education, primary and secondary health care, social care and other essential facilities.

Non-residential development should be accessible within walking distance and/or by bus or rail to a majority of its potential users.

Policy T3

Development should be laid out and linked to existing or proposed developments and facilities in ways that will maximise the use of sustainable modes of transport. Proposals should ensure that:

- a) All existing and proposed walking and cycle routes are safeguarded or that alternative reasonably convenient routes are provided;
- b) Suitable cycle parking provision is provided in accordance with the standards set out in schedule 2;
- c) Where more than 20 people are employed facilities for showering and changing are provided;
- d) Full account is taken of the needs of bus operation through and alongside new development by the provision of lay-bys, roads and other associated facilities;
- e) Where appropriate, pedestrian and cycling links are provided to existing or proposed rail stations;
- f) The particular needs of people with disabilities are taken into account.

Policy LS1

Development which would harm the landscape setting of the city will not be permitted. Proposals should maintain local distinctiveness and character and:

a) Be reasonably necessary for the purposes of agriculture, forestry, the rural economy, outdoor recreation or the provision of infrastructure; or

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 17 of 48

b) Be concerned with change of use, conversion or extension of existing buildings:

Any built development associated with outdoor recreation must be essential to the viability of the proposal unless the recreational activity provides sufficient benefit to outweigh any harm to the character and amenity of the area.

Policy EN1

Development that may be liable to cause pollution, including proposals which allow the use, movement or storage of hazardous substances, will only be permitted if:

- a) The health, safety and amenity of users of the site or surrounding land are not put at risk; and
- b) The quality and enjoyment of the environment would not be damaged or put at risk. Development on or in the vicinity of the site that may be liable to cause pollution will only be permitted if there is no unacceptable risk to the health and safety of its users.

Policy EN5

Noise-generating development will not be permitted if it would be liable to increase adversely the noise experienced by the users of existing or proposed noise- sensitive development nearby.

Noise-sensitive development will not be permitted if its users would be affected by noise from existing or proposed noise-generating uses unless adequate mitigation works can be implemented to achieve an acceptable environment.

Policy DG1

Development Should:

- a) Be compatible with the urban structure of the city, connecting effectively with existing routes and spaces and putting people before traffic;
- b) Ensure that the pattern of street blocks, plots and their buildings (the grain of development) promotes the urban character of Exeter;
- c) Fully integrate landscape design into the proposal and ensure that schemes are integrated into the existing landscape of the city including its three- dimensional shape, natural features and ecology;
- d) Be at a density which promotes Exeter s urban character and which supports urban services;
- e) Contribute to the provision of a compatible mix of uses which work together to create vital and viable places;
- f) Be of a height which is appropriate to the surrounding townscape and ensure that the height of constituent part of buildings relate well to adjoining buildings, spaces and to human scale;
- g) Ensure that the volume and shape (the massing) of structures relates well to the character and appearance of the adjoining buildings and the surrounding townscape;
- h) Ensure that all designs promote local distinctiveness and contribute positively to the visual richness and amenity of the townscape;
- i) Use materials which relate well to the palette of materials in the locality and which reinforce local distinctiveness.

Policy DG4

Residential development should:

- a) Be at the maximum feasible density taking into account site constraints and impact on the local area;
- b) Ensure a quality of amenity which allows residents to feel at ease within their homes and gardens;
- c) Ensure that the boundaries of private rear gardens facing public places are designed to make a positive contribution to the townscape;
- d) Where front gardens are included provide enclosure to create defensible space.

Policy DG6

In providing for vehicle circulation and car parking in new residential development the design of the scheme should:

- a) Ensure that parking provision is arranged so that urban form may be created without vehicles dominating the street scene;
- b) Provide permeable highway systems linked to adjoining roads;
- c) Ensure that the means of calming traffic do not detract from the character of the townscape;
- d) Provide safe and secure parking that is subject to clear surveillance by local residents.

6.0 Energy Usage and Carbon Emissions

Government policies require significant energy reductions from buildings. Building a Greener Future sets a planned trajectory (delivered via Part L of the building regulations 2013) with an aspiration for all non-domestic new buildings to be zero carbon by 2020. The Climate Change Act (Nov 2008) sets the UK targets of; CO₂ reduction of 26% by 2020 and CO₂ reduction of 80% by 2050.

6.1 Policy Review

Energy modelling has been undertaken which adopts the following hierarchy for reducing carbon emissions for the development; Be Lean, Be Clean, Be Green.

National Planning Policy Framework (2021)

Section 14 – Meeting the Challenge of Climate Change, Flooding and Coastal Change

To help increase the use and supply of renewable and low carbon energy and heat, plans should;

a. provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);

b. consider identifying suitable areas for renewable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and

c. identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for collocating potential heat customers and suppliers.

Exeter City Council Core Strategy (Adopted February 2012)

Core Policy 13:

Decentralised Energy Networks will be developed and brought forward. New development (either new build or conversion) with a floorspace of at least 1,000 square metres, or comprising ten or more dwellings, will be required to connect to any existing, or proposed, Decentralised Energy Network in the locality to bring forward low and zero carbon energy supply and distribution. Otherwise, it will be necessary to demonstrate that it would not be viable or feasible to do so. Where this is the case, alternative solutions that would result in the same or better carbon reduction must be explored and implemented, unless it can be demonstrated that they would not be viable or feasible.

Core Policy 14:

New development (either new build or conversion) with a floorspace of at least 1,000 sq. metres, or comprising ten or more dwellings, will be required to use decentralised and renewable or low carbon energy sources, to cut predicted CO2 emissions by the equivalent of at least 10% over and above those required to meet the building regulations current at the time of building regulations approval, unless it can be demonstrated that it would not be viable or feasible to do so.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 20 of 48

6.2 Development Sustainability Features

The total baseline energy and carbon emissions for the development (built to Part L 2013), taking into account regulated energy demands are:

- 233,439.61 kWh/annum
- 545.30 Tonnes CO₂/annum

The primary energy demands of the development will be:

- Lighting;
- General power;
- Heating and ventilation;
- Hot water supply.

Unregulated energy use is not covered by existing regulations and includes energy consumed by the occupants through activities and appliances; in this case it would typically be small power usage (appliances, computers etc.). The following unregulated energy use for the development was calculated:

- 177,234 kWh/annum
- 455 Tonnes CO₂/annum

<u>Be Lean</u>

To provide energy and carbon saving further to a base Part L (2013) build; targeting compliance with local and national policies, the following passive design and energy efficiency measures are recommended.

The following 'U' values shall be incorporated within the residential development, in accordance with Part L1A (2013):

• External Walls (including any walls separating unconditioned and conditioned spaces)

U = 0.16 W/m².K;

- Exposed Floors (including any floors separating unconditioned and conditioned spaces)
 U = 0.11 W/m².K;
- Exposed Roofs $U = 0.11 \text{ W/m}^2.\text{K};$
- Glazing U = 1.2 W/m².K;
- Air Permeability 3 m³/hr/m²@ 50 Pa.

Together with the above passive design measures, the proposed energy strategy includes the following energy efficiency measures throughout the development:

- The provision of energy efficient lighting (PIR controls and occupancy sensing in relevant areas);
- The provision of zonal thermal and lighting controls;
- The provision of variable speed pumps and fans;

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 21 of 48

- The enhancement of pipework and ductwork, thermal insulation;
- Specific Fan Powers improved beyond Part L requirements.

<u>Be Clean</u>

It was investigated to establish if there were any existing decentralised energy networks near the proposed site using the Department of Energy and Climate Change CHP database. It has been concluded that there are no suitable existing nearby CHP systems to which a connection may be possible.

In order to economically justify installing a CHP unit on any site, a minimum requirement of 4,000 hours running time per year is necessary. Based on the building types being residential, there is a low heating and hot water demand for a continuous period over the year, typically a maximum of circa 2,117 hours is anticipated.

Months	Load per Day (hrs)	Load per week (hrs)	Load per month (hrs)	Load for 6 months (hrs)	
April to Sept	2	14	58.8	352.8	
October to					
March	10	70	294	1,764.0	
		Total approximate	Load for a year	2,116.8	hours
		Minimum required	hours	4,000.0	hours

Table 6.1 CHP Analysis

Be Green

Further means of reducing energy and carbon emissions for the development have been explored, through the use of renewable technologies. The following, Table 6.2, reviews the primary options for generation of on-site renewable/ Low or Zero Carbon (LZC) energy and considers their suitability for use on the development.

Renewable Technology Feasibility Assessment		
Bio Fuel Boilers	 Bio-fuel boilers are specifically designed to burn solid biomass or liquid bio-fuel in order to heat water, or raise steam. This can then be used for space heating or Domestic Hot Water (DHW) supply. Bio-fuel boilers could potentially provide the annual space heating and DHW demand for the Units, however they are not recommended for this development for the following reasons:- Biomass boilers generate increased Oxides of Nitrogen (NOx) and particulates (PM10) which would affect air quality. The storage requirements for the biofuel would require a large plant space, with an auxiliary storage facility to allow for a two 	No
	week period where delivery of fuel might not be available.	

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 22 of 48

Renewable Technology	Feasibility Assessment	Viable?
vehicular access for fuel de <u>Noise</u> Noise levels are generated	by the operation of the bio-fuel boiler and associated deliveries of the enclosure will have to be attenuated to acceptable levels imposed by	
Wind Turbines Image: Additional and the second	 Wind turbines convert the kinetic energy in the wind into mechanical energy which is then converted into electricity. Wind turbines can provide electrical power either directly to a load or via a battery system. The use of wind turbines is not recommended for this development for the following reasons:- 1. Wind turbines, of a size necessary to make a contribution to the Units' renewable energy requirements are considered inappropriate on spatial, planning, aesthetic and noise grounds. Noise pollution from commercial wind turbines can be quiet significant within a few hundred metres. 2. The site is not ideal; an ideal site is a hill with a flat, clear exposure. It should be free from strong turbulence and obstructions like large trees, houses or other buildings. 3. The financial viability of a small scale installation on the site would be compromised by the operational efficiency of the units (circa 30%). 4. Wind turbines, can cause electrical interference within a 2km radius. 5. Finally, the main disadvantage is down to the winds unreliability factor. The wind strength is often too low in many areas, where this site is located the wind speed is 4.1 m/s at 10m, as can be seen in the wind map presented in Appendix C, in order for the wind turbines to be feasible, wind speeds of greater than 5.5m/s are required. 6. Due to the wind speed not being adequate Wind Turbines have not been proposed. 	No
the wind turbines are location of the wind turbines are location of the second	visual impact on the site which will be dependent on the height at which ted. I by the rotating blades; these noise levels will vary dependent on wind to be in acceptable levels imposed by planning and Acoustician	

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 23 of 48

Renewable Technology I	Feasibility Assessment	Viable?
would be required to inves <u>Noise</u>	 Space cooling and heating can be provided by circulating water cooled or heated directly by the ground or via subterranean water. Ground water cooling and heating through the use of aquifers makes use of the relatively stable ground/ water temperature which is available at a temperature range of 10 – 14°C. The use of Ground Source Heat Pumps is not recommended for this development for the following reasons:- 1. Cost of boreholes may be prohibitive (subject to site geological conditions). 2. Favourable ground conditions may not exist. 3. Problems can arise with boreholes silting up (open-loop). 4. Changes in local ground conditions could affect water quality and the amount that can be extracted (open-loop). GSHP have not been implemented for this development at this point because an EA assessment must be undertaken as well as a hydrogeological survey to determine the number of boreholes required. 	No
Solar Water Heating	Solar Water Heating systems use radiant energy from the sun to heat water. Systems comprise of a roof mounted heat collector piped to a coil located within a hot water storage cylinder. The use of Solar Panels are not recommended for this development.	No
Noise levels are generated Air Source Heat Pumps	by pumps at roof level, these are insignificant so should pose no issues. An Air Source Heat Pump extracts heat from the outside air in the same way that a fridge extracts heat from its inside. It can extract heat from the air even when the outside temperature is as low as minus 15°C and typically draws approximately a quarter to a third of the electricity of a standard resistance heater for the same amount of heating, reducing utility bills. This typical efficiency compares to 70-95% for a fossil-fuel powered boiler.	Yes

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 24 of 48

Renewable Technology	Feasibility Assessment	Viable?
	Air Source Heat Pumps (ASHP) are proposed to supply hot water to the development.	
When installing Air Source be positioned to provide s problems. <u>Noise</u>	be installed on ground mounted, roof mounted or wall mounted frames. Heat Pumps there are various factors to consider; Heat Pumps should shelter from high winds which can reduce efficiency by causing defrost	
dependent on manufactu	d by fans, and compressors causing vibrations. The noise levels are rer and vary accordingly, these will need to be in acceptable levels accousticians recommendations.	
Photovoltaics	 Photovoltaic (PV) modules convert sunlight directly to DC electricity. The solar cells consist of a thin piece of semiconductor material, in most cases silicon. They have the following advantages for use on this development; Photovoltaic panels can be situated at roof level, east facing, to provide a source of renewable energy. Panels can be grid connected to sell surplus electricity produced. Low maintenance issues. Visual use of renewable energy can be seen by general public. A total of 56.58 kWp PV has been proposed for the development. 	Yes
Noise	r adverse visual impacts as the photovoltaic panels are roof mounted. generated by this technology.	
	Table 6.2 Renewable Technology Feasibility Assessment	

6.3 Summary

By applying the above passive design measures and renewable energy technologies the savings generated are displayed in Table 6.3, and Figures 6.1 - 6.2. The full calculations can be seen in Appendix **D**.

	Carbon Dioxide Emissions (Tonnes CO ₂ per annum)	
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development	545.30	455
After Energy Efficient and Passive Measures	453.13	It is anticipated that a circa 3% saving can be achieved through the use of energy efficient fittings, for example A or A+ appliances. This would reduce the unregulated carbon emissions to: 441.35
After ASHP	423.23	
Total Cumulative Saving	122.07 (22.39%)	13.65 (3%)

Table 6.3 Carbon Dioxide Emissions

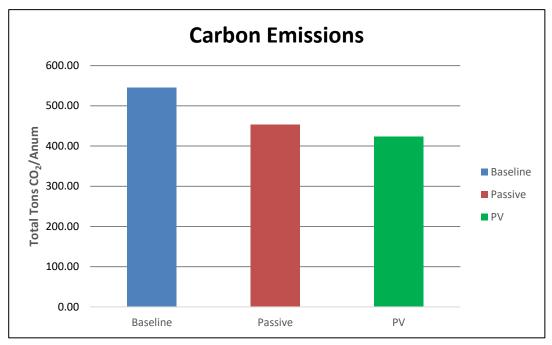
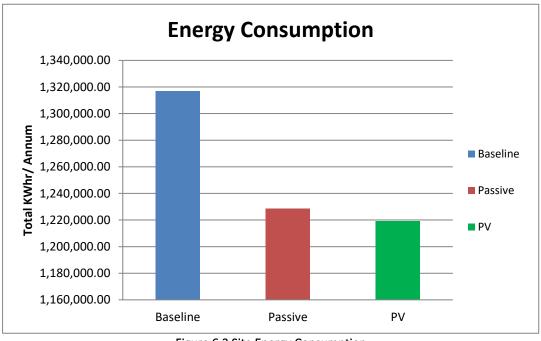
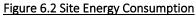




Figure 6.1 Site Carbon Emissions

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 27 of 48

The strategy for the residential elements of the development is shown in table 6.4 below.

Residential Element Energy Strategy				
Heating	Heating is provided through Electric Panel Heaters			
Cooling	Cooling not proposed within the residential development			
How Water (DHW)	Low Temperature On-Site Communal Heating Network via ASHP			
Ventilation	Natural Ventilation via openable windows, and MVHR in accordance with Approved Document F			
Lighting	Energy efficient LED lighting where applicable			

Table 6.4 Proposed Energy Strategy for the residential elements of the development

The above review has resulted in the formulation of an Energy Strategy that may be adopted for the development involving the use of passive design and energy efficiency measures aimed at achieving the targets and recommendations set out by Exeter Council.

The recommended schemes take into consideration the most appropriate technologies available to the site, which provides a scheme that is commercially viable whilst keeping in compliance with National and Local Policies. The use of further/emerging technologies may be included for use within this development if their feasibility increases in the future, in accordance with best practice.

7.0 Water Consumption

The ever increasing impacts of climate change are continuously inflating demand for water, as well as increasing a need for awareness towards water usage. The UK is already under a large amount of pressure regarding water resources. To contribute towards mitigating this issue, the proposed development will consider various means of being economical with water consumption.

7.1 Policy Review

National Planning Policy Framework (2021)

Section 15- Conserving and Enhancing the Natural Environment

Planning policies and decisions should contribute to and enhance the natural and local environment by:

a) preventing new and existing development from contributing to, being put at unacceptable risk from, or being adversely affected by, unacceptable levels of soil, air, water or noise pollution or land instability. Development should, wherever possible, help to improve local environmental conditions such as air and water quality, considering relevant information such as river basin management plans.

Exeter City Council Core Strategy (Adopted February 2012)

Policy CP15

Proposals for development are expected to demonstrate how sustainable design and construction methods will be incorporated. All development must be resilient to climate change (particularly summer overheating) and optimise energy and water efficiency through appropriate design, insulation, layout, orientation, landscaping and materials, and by using technologies that reduce carbon emissions.

7.2 Development Sustainability Features

In order to ensure the reduction and management of water consumption within the proposed residential units, it is anticipated that various measures shall be undertaken, and specific features installed during the fit out works to minimise the building's potable water consumption. This will be done through a water consumption calculator tool to manage the final water consumption of the development.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 29 of 48

Table 2.1 Maximum fittings consumption		
Water fitting	Maximum consumption	
WC	6/4 litres dual flush or	
	4.5 litres single flush	
Shower	10 l/min	
Bath	185 litres	
Basin taps	6 l/min	
Sink taps	8 l/min	
Dishwasher	1.25 l/place setting	
Washing machine	8.17 l/kilogram	

Figure 7.1 – Maximum fitting consumption from document G of building regulation

It is anticipated that improvements in the consumption of potable water will be achieved through the specification of water efficient components within sanitary areas during the fit out works. Such features include the specification of low flow taps as well as dual flush toilets with reduced flush volumes.

7.3 Summary

To ensure the sustainability of the development it is anticipated that water efficient fixtures will be incorporated into the design, such as low flow taps and dual flush toilets with reduced effective flush volumes.

To be further sustainable, it is anticipated that pulsed water meters will be installed on the mains water supply, to effectively monitor water consumption. The inclusion of the above sustainability features allows for the development to be deemed sustainable about water consumption.

8.0 Transport

Transport produces a large proportion of the country's greenhouse gas emissions, something which government at both national and local level are striving to combat, especially through planning frameworks for new developments. Solutions to transport issues are to be incorporated into the design of the development.

8.1 Policy Preview

National Planning Policy Framework (2021)

Section 9 – Promoting Sustainable Transport

Transport issues should be considered from the earliest stages of plan-making and development proposals, so that:

- a. the potential impacts of development on transport networks can be addressed;
- opportunities from existing or proposed transport infrastructure, and changing transport technology and usage, are realised – for example in relation to the scale, location or density of development that can be accommodated;
- c. opportunities to promote walking, cycling and public transport use are identified and pursued;
- d. the environmental impacts of traffic and transport infrastructure can be identified, assessed and taken into account including appropriate opportunities for avoiding and mitigating any adverse effects, and for net environmental gains.

Exeter City Council Local Plan Review 1995 – 2011 (Saved Policies)

Policy T2

In accordance with the accessibility criteria set out in schedule 1: residential development should be located within walking distance of a food shop and a primary school and should be accessible by bus or rail to employment, convenience and comparison shopping, secondary and tertiary education, primary and secondary health care, social care and other essential facilities.

Non-residential development should be accessible within walking distance and/or by bus or rail to a majority of its potential users.

8.2 Development Sustainability Features

The proposed development is located in Exeter, and the site is in close proximity to the A377 Road. The development is located within 0.1 miles from the nearest bus stop.

The proposed development is in close proximity to the national cycle network as shown in Figure 8.1 below as well as the availability of cycle storage.

A Transport Assessment has been carried out by RGP which demonstrates that the proposed development meets the requirements set out within National and Local Government policies.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 31 of 48

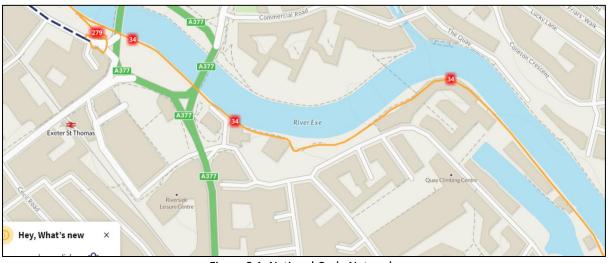


Figure 8.1. National Cycle Network

8.3 Summary

The above provisions aim to make the proposed development easier to access for all building users, as well as offering a sustainable means of commuting rather than using a private vehicle.

The proposed development is located in Exeter, and the site is in close proximity to the A377 Road. The development is located within walking distance from the nearest bus stop.

It can also be noted that some leisure as well as a number of primary amenities including food outlets are available nearby for example Co-op and Malthouse Exeter.

The proposed development is in close proximity to the national cycle network as shown in Figure 8.1 below. It can also be noted that some leisure as well as a number of food outlets are available nearby.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 32 of 48

9.0 Sustainable Design

Good urban design is essential in providing a varied and sustainable environment, which can facilitate opportunities for positive contributions within communities. As part of sustainable design for developments, it is essential that suitable design principles are followed to maximise opportunities for energy reduction through design as well as ensuring buildings follow or enhance the character of an area. Developments should also give further consideration to the level of security and comfort that is provided for future building users, including thermal and visual comfort, inclusivity and safe access.

9.1 Policy Review

National Planning Policy Framework (2021)

Section 12- Achieving Well-Designed Places

The creation of high-quality buildings and places is fundamental to what the planning and development process should achieve. Good design is a key aspect of sustainable development, creates better places in which to live and work and helps make development acceptable to communities. Being clear about design expectations, and how these will be tested, is essential for achieving this. So too is effective engagement between applicants, communities, local planning authorities and other interests throughout the process.

Exeter City Council Core Strategy (Adopted February 2012)

Core Policy 15:

Proposals for development are expected to demonstrate how sustainable design and construction methods will be incorporated. All development must be resilient to climate change (particularly summer overheating) and optimise energy and water efficiency through appropriate design, insulation, layout, orientation, landscaping and materials, and by using technologies that reduce carbon emissions.

Residential development will be required to achieve the above (Para 10.29) Code for Sustainable Homes Level (overall performance across the code categories and complying with minimum standards).

Exeter City Council Local Plan Review 1995 – 2011 (Saved Policies)

Policy DG1

Development Should:

- a) Be compatible with the urban structure of the city, connecting effectively with existing routes and spaces and putting people before traffic;
- b) Ensure that the pattern of street blocks, plots and their buildings (the grain of development) promotes the urban character of Exeter;
- c) Fully integrate landscape design into the proposal and ensure that schemes are integrated into the existing landscape of the city including its three- dimensional shape, natural features and ecology;

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 33 of 48

9.2 Development Sustainability Features

The proposed development shall include a variety of features which are regarded as having a good sustainable design.

To ensure the risk of potential overheating is minimised, building modelling of each typical residential unit has confirmed that no occupied space is at risk from excessive solar gains; this being achieved through using glazing with a low shading coefficient. Additionally, to ensure that overheating will not occur during summer months and the building is suitably insulated as well as allowing for adaptation due to the effects of climate change, it is anticipated that the development will use building fabrics with enhanced 'U' values which go beyond the minimum requirements of Part L1A (2013) and Part L2A (2013), this is displayed within Table 9.1 and 9.2. Further to this the energy efficiency measures discussed within Section 6.0 will be incorporated into the design of the development. It is anticipated that such measures will lower the building's energy requirements making its operation feasible and practical for years to come.

Element	Part L1A Requirement	U Value Specified	% Improvement
Wall	0.30	0.16	46.6%
Roof	0.20	0.11	45%
Floor	0.25	0.11	56%
Glazing (Windows/Doors and Rooflights combined)	2	1.2	40%

	Table 9.1	L U Value	for the	Residential	Element
--	-----------	-----------	---------	-------------	---------

Element	Part L2A Requirement	U Value Specified	% Improvement
Wall	0.35	0.16	54.3%
Roof	0.25	n/a	n/a
Floor	0.25	0.15	40%
Glazing	2.2	1.2	45.5%

Table 9.1 U Value for the Commercial Element

To provide a fully sustainable development it is also anticipated that the materials used for the following main elements of the development shall be rated under the Green Guide to Specification targeting ratings between A+ and D:

- External walls;
- Internal Partitions
- Ground floor;
- Internal floors;
- Roof;

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 34 of 48

- Internal Ceilings
- Windows.

9.3 Summary

In order to comply with national and local policies, the development shall strive to provide both to building users and the local community a building of sustainable design.

Measures should be taken to ensure the thermal comfort of future building users, through efforts such as ensuring no occupied areas will result in excessive solar gains and in turn over heating.

The above design features allow for the proposed development to be of sustainable design.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 35 of 48

10.0 Construction Site Management

The requirement for new materials needs to be minimised, by re-using existing buildings and materials where possible and providing a Site Waste Management Plan for all construction sites. This responsibility lies with the contractor and needs to be clarified at an early design stage. It is becoming a greater requirement now to construct buildings that are flexible and can be re-used.

10.1 Policy Review

National Planning Policy Framework (2021)

Local plans should set out strategic priorities for the area; this should include strategic policies to deliver the provision of infrastructure for waste management, water supply and wastewater.

Exeter City Council Core Strategy (Adopted February 2012)

Policy CP18

New development must be supported by appropriate infrastructure provided in a timely manner. The City Council will continue to work in partnership with infrastructure providers and other delivery agencies to keep an up to date infrastructure delivery plan that will enable proposals, in accordance with the spatial strategy, to be brought forward.

Developer contributions will be sought to ensure that the necessary physical, social, economic and green infrastructure is in place to deliver development. Contributions will be used to mitigate the adverse impacts of development (including any cumulative impact). Where appropriate, contributions will be used to facilitate the infrastructure needed to support sustainable development.

10.2 Development Sustainability Features

In order to comply with national and local policy, it is anticipated that certain measures will be put into place for this development, such as a Site Waste Management Plan which monitors the site energy and water consumption and ensures that that site timber is legally and responsibly sourced in accordance with the UK Government's Timber Procurement Policy. Further to this the Site Waste Management Plan should also monitor the resource efficiency of the development construction works as well as the percentage of non-hazardous materials, excavation and construction, which have been diverted from landfill.

It is expected that the main contractor will also set targets and monitor site consumption data for water consumption, energy consumption as well as fuel from deliveries and collection of waste and materials to and from site. Monitoring of such actions can encourage contractors to become more resource efficient to meet given targets.

Additionally, it is expected the main contractor will comply with best standards as set out in the Considerate Constructors Scheme, achieving a score which is considered as exceeding compliance with the criteria of the scheme.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 36 of 48

To ensure the sustainable construction of the development, the project will consider the concept of the waste hierarchy as seen in Figure 9.1 below. The waste hierarchy recognises the need for waste to be considered for a variety of waste streams before being sent to land fill as a last resort. The hierarchy is as follows:

- Waste minimisation;
- Reusing or waste or up cycling;
- Recycling of all applicable materials;
- Recovery of energy from waste (anaerobic digestion plants);
- Waste is sent to landfill.

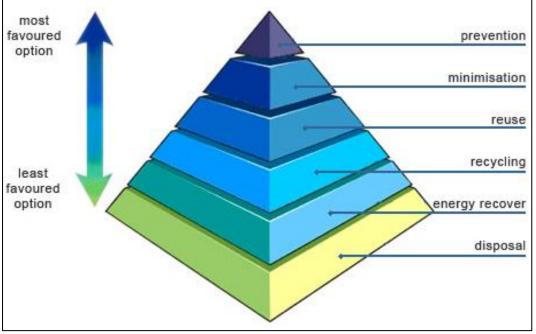


Figure 9.1 Waste Hierarchy Diagram

10.3 Summary

It is anticipated that this development will produce a Site Waste Management Plan, highlighting key refurbishment materials and the correct waste streams for recycling these materials.

The development should adhere to a Considerate Constructors Scheme, achieving a targeted score which exceeds 'compliance' with the criteria of the scheme. As a result of these measures, the development may be deemed sustainable as regards to construction site management.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 37 of 48

11.0 Flood Risk

To prevent an increase in surface water run off through development of a site, it is imperative that consideration is given to the reduction of over land flow during storm events as well as the impact of development in potential flood risk areas.

11.1 Policy Review

National Planning Policy Framework (2021)

Section 14- Meeting the Challenge of Climate Change, Flooding and Coastal Change

Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere.

Exeter City Council Core Strategy (Adopted February 2012)

Policy CP12

The spatial strategy reflects the precautionary approach to flooding and flood risk. Site allocations will be determined by applying a risk-based search sequence, utilising the sequential test and, where appropriate, the exception test, in accordance with national policy guidance. The Exeter Strategic Flood Risk Assessment will be used to ensure that development avoids areas of higher risk. All development proposals must mitigate against flood risk utilising SUDS where feasible and practical.

11.2 Development Sustainability Features

The flood map sourced from The Government Flood Warning Information Service seen below in Figure 11.1, demonstrates that the proposed site is not at risk of flooding from fluvial sources.

A Flood Risk Assessment has been undertaken by Richard Jackson Ltd, which also confirms that the site did not flood in any of the historic floods from 1950 to 1993.

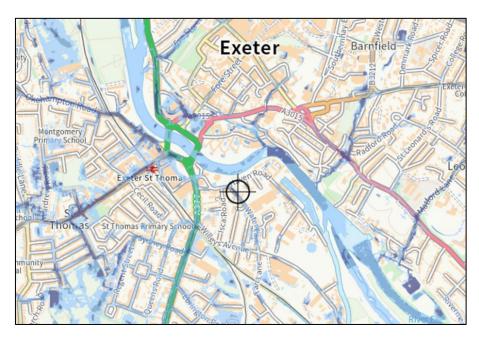


Figure 11.1: Fluvial Flooding (Sourced from Flood Warning Information Service)

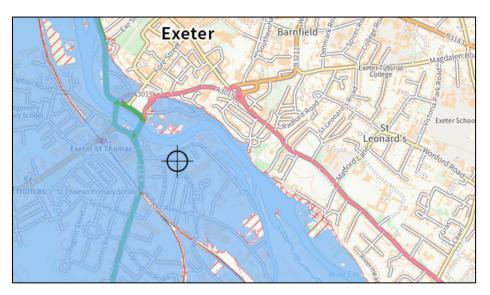


Figure 11.2: Reservoir Flooding (Sourced from Flood Warning Information Service)

11.3 Summary

The above maps confirm that the site is at moderate risk of flooding from reservoirs, however not at risk of flooding from fluvial sources. For further details on flooding please refer to the Flood Risk Assessment submitted as part of planning.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 39 of 48

12.0 Noise

Noise is a subjective concept that can affect people differently, however there are set standards as to acceptable levels of noise, for different areas and times of day. In this instance, the proposed development would not be subject to potential noise pollution from either road or rail sources.

12.1 Policy Review

National Planning Policy Framework (2021)

Paragraph 185

Planning policies and decisions should also ensure that new development is appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development. In doing so they should:

- a) mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development – and avoid noise giving rise to significant adverse impacts on health and the quality of life;
- b) identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason; and
- c) limit the impact of light pollution from artificial light on local amenity, intrinsically dark landscapes and nature conservation.

12.2 Development Sustainability Features

The proposed development will not be subject to noise pollution from road or rail sources as seen in Figure 12.1

It should be noted that the noise levels are 'A' weighted and as such only demonstrate sounds on a frequency that would affect human populations, it does not consider noise on frequencies that may affect any local habitats.

12.2 Summary

The development would not be subject to sources of noise pollution from surrounding roads or rail lines. It is anticipated that any plant equipment installed will not have an impact on the local area and as such the proposed development may be deemed sustainable with regard to noise.

Auricl acoustic consulting was commissioned to produce the Noise Assessment Report, which should be read in conjunction with this report as it covers Noise Assessment in more detail.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 40 of 48

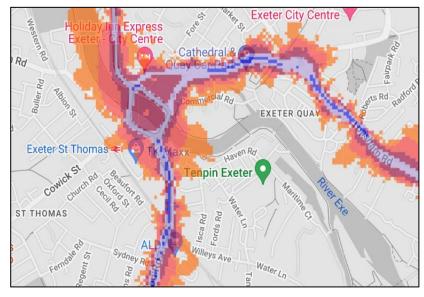


Figure 12.1: Road Noise Data Map (Postal Code Analysis, Sourced from Extrium)

Figure 12.2: Rail Noise Data Map (Postal Code Analysis, Sourced from Extrium)

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 41 of 48

13.0 Ecology

Ecology is essential within many communities, with the mix of flora and fauna facilitating benefits such as flood alleviation and pollution amelioration. In addition to this, areas with a wealth of green spaces and an abundance of biodiversity are seen to provide a positive contribution to a community such as shingle Beaches to provide for Green / shingle roofs.

13.1 Policy Review

National Planning Policy Framework (2021)

Section 15- Conserving and Enhancing the Natural Environment

The planning system should protect and enhance valued landscapes, minimise impacts on biodiversity.

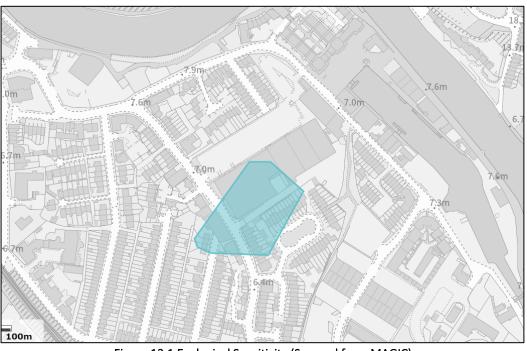


Figure 13.1 Ecological Sensitivity (Sourced from MAGIC)

13.2 Summary

An Ecology conservation map (sourced from MAGIC) has shown there are no Sites of Special Scientific Interest (SSSI) in the vicinity of the site development.

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 42 of 48

Appendix A - Flood Risk Map

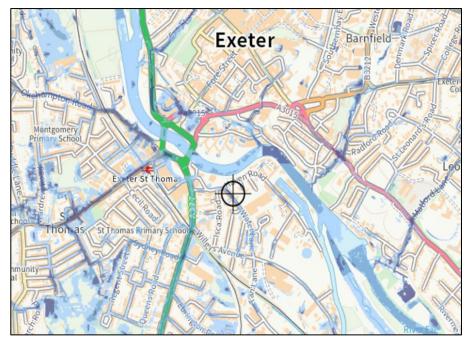
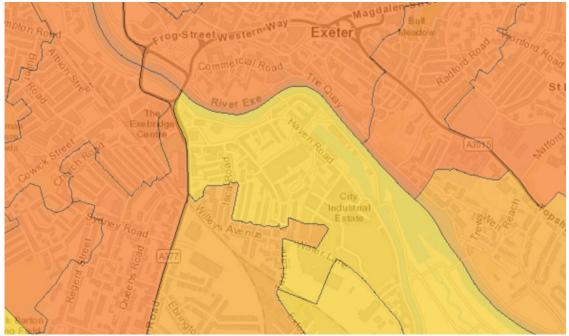



Figure 11.1: Fluvial Flooding (Sourced from Flood Warning Information Service)

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 43 of 48

Appendix B – CHP Search

CHP availability Search Area

Sector Name	Share	Total MWh
Communications and Transport	0.07%	4 MWh
Commercial Offices	0.84%	45 MWh
Domestic	90.57%	4,880 MWh
Education	0%	0 MWh
Government Buildings	0%	0 MWh
Hotels	1.49%	80 MWh
Large Industrial	0%	0 MWh
Health	0%	0 MWh
Other	0%	0 MWh
Small Industrial	0.82%	44 MWh
Prisons	0%	0 MWh
Retail	2.32%	125 MWh
Sport and Leisure	3.71%	200 MWh
Warehouses	0.17%	9 MWh
District Heating	0%	0 MWh
Total heat load in Area		5,388 MWh

Total Heat Load Distribution

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 44 of 48

Appendix C – Wind Map

Chart C.1 Wind Velocity Chart for the Development Site

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 45 of 48

Appendix D – Energy Calculations

	resi and no	on resi carbon ca	lcs
	Total Baseline	Total Passive	Total PV
Block A	42.83417	36.33431	33.83431
Block B	38.02382	32.04523	30.34523
Block C	294.79676	231.95188	206.2519
Block D	169.64688	152.79764	152.7976
Total	545.30163	453.12906	423.2291
		16.90304318	22.38625
	Total	Energy Calcs	
	Baseline	Passive	PV
Block A	103083.069	93220.987	89558.99
Block B	91745.191	83588.508	80230.51
Block C	703468.452	649222.404	646991.4
Block D	418595.5	402499.742	402499.7
Total	1316892.212	1228531.641	1219281

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 46 of 48 Haven Road, Exeter

Energy and Sustainability Statement

Appendix E – Sample SAP Report

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 47 of 48

Property Reference	Block D TF Studio 20.1m2				Issued on Date	29/06/2022
Assessment Reference	Passive+PV			Prop Type Ref		
Property						
SAP Rating		87 B	DER	25.36	TER	44.56
Environmental		92 A	% DER <ter< th=""><th></th><th>43.09</th><th></th></ter<>		43.09	
CO ₂ Emissions (t/yea	r)	0.38	DFEE	46.42	TFEE	46.76
General Requirement	ts Compliance	Fail	% DFEE <tfee< th=""><th></th><th>0.72</th><th></th></tfee<>		0.72	
	Mr. Sushil Pathak, Cudd Bent sushil.pathak@cuddbentley.o		Ltd, Tel: 01344	628 821,	Assessor ID	Z621-0001
Client						

REGULATIONS COMPLIANCE REPORT - Approved Document L1A, 2013 Edition, England

REGULATIONS COM	PLIANCE REPORT - Appro	oved Document L1A, 2013 Edition, England	
DWELLING AS DES	IGNED		
Top-floor flat,	total floor area 20 m	n²	
It is not a com	ers items included wit plete report of regula		
la TER and DER Fuel for main h Fuel factor:1.5 Target Carbon D Dwelling Carbon	eating:Electricity 5 (electricity) ioxide Emission Rate ((TER) 44.56 kgCO□/m² ≘ (DER) 25.36 kgCO□/m²OK	
	nergy Efficiency (TFEE Energy Efficiency (DE		
2 Fabric U-valu	es		
	Average 0.16 (max. 0.30)	Highest 0.16 (max. 0.70) OK	
Party wall	0.00 (max. 0.20)	- OK	
Floor	(no ricor)	0 11 (max 0 35) OK	
Openings	0.11 (max. 0.20) 1.20 (max. 2.00)	1.20 (max. 3.30) OK	
2a Thermal brid Thermal bridgin	ging g calculated from line	ear thermal transmittances for each junction	
Maximum	ity y at 50 pascals:	3.00 (design value) 10.0	OK
4 Heating effic Main heating sy	iency	Room heaters - Electric	
		None	
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor	lation ge SCG 0.29 k insulated:	Measured cylinder loss: 0.06 kWh/day OK No primary pipework	
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor	lation ge SCG 0.29 k insulated:	Measured cylinder loss: 0.06 kWh/day	
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor	lation ge SCG 0.29 k insulated:	Measured cylinder loss: 0.06 kWh/day OK No primary pipework	
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls	lation ge SCG 0.29 k insulated: ontrols:	Measured cylinder loss: 0.06 kWh/day OK No primary pipework	
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr	lation ge SCC 0.29 k insulated: ontrols: ols:	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum 8 Mechanical ve Continuous supp	lation ge SCG 0.29 k insulated: ontrols: ols: 	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75%	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum 8 Mechanical ve Continuous supp Specific fan po	lation ge SCG 0.29 k insulated: ontrols: ols: 	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75%	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum 8 Mechanical ve Continuous supp	lation ge SCG 0.29 k insulated: ontrols: ols: 	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90%	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 	lation ge SCG 0.29 k insulated: ontrols: ols: 	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75%	Fail
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 	lation ge SCG 0.29 k insulated: ontrols: ols: 	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75%	Fail OK
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating of Hot water contr 	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e ntilation ly and extract system wer: : mperature k (Thames Valley):	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average	Fail OK OK OK
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum 8 Mechanical ve Continuous supp Specific fan po Maximum MVHR efficiency Minimum: 9 Summertime te Overheating ris Based on: Overshading: Windows facing	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e milation ly and extract system wer: : mperature k (Thames Valley): South:	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average 3.60 m ² , No overhang	Fail OK OK OK
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating of Hot water contr 	lation ge SCG 0.29 k insulated: ontrols: ols: 	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average	Fail OK OK OK
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating of Hot water contr 	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e ntilation ly and extract system wer: : mperature k (Thames Valley): South: :	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average 3.60 m², No overhang 4.00 ach None	Fail OK OK OK
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum 8 Mechanical ve Continuous supp Specific fan po Maximum MVHR efficiency Minimum: 9 Summertime te Overheating ris Based on: Overshading: Windows facing Air change rate Blinds/curtains 10 Key features	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e ntilation ly and extract system wer: : mperature k (Thames Valley): South: :	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average 3.60 m ² , No overhang 4.00 ach None	Fail OK OK OK
5 Cylinder insu 5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 7 Low energy li Percentage of f Minimum 8 Mechanical ve Continuous supp Specific fan po Maximum MVHR efficiency Minimum: 9 Summertime te Overheating ris Based on: Overshading: Windows facing Air change rate Blinds/curtains 10 Key features Party wall U-value Air permeabilit	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e ntilation ly and extract system wer: : mperature k (Thames Valley): South: : lue y	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average 3.60 m², No overhang 4.00 ach None 0.00 W/m²K 0.11 W/m²K 0.10 W/m²K	Fail OK OK OK
5 Cylinder insu Hot water stora Permitted by DB Primary pipewor 6 Controls Space heating c Hot water contr 	lation ge SCG 0.29 k insulated: ontrols: ols: ghts ixed lights with low-e ntilation ly and extract system wer: : mperature k (Thames Valley): South: : lue y	Measured cylinder loss: 0.06 kWh/day OK No primary pipework No thermostatic control of room temperature No cylinderstat energy fittings:100% 75% 0.63 1.5 90% 70% Slight Average 3.60 m², No overhang 4.00 ach None 0.00 W/m²K 0.11 W/m²K	Fail OK OK OK

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

1. Overall dwelling dimensions									
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	20.1000	Area (m2) 20.1000 (1b) (3a)+(3h	x	rey height (m) 2.7000 +(3d)+(3e)	,	=	Volume (m3) 54.2700 54.2700	(4)	- (3b)

					main heating	s	econdary heating	c	ther	tota	11	m3 per hour	
Number of chimn	eys				ō	+	ō	+	0 =		0 * 40 =	0.0000	(6a)
Number of open					0	+	0	+	0 =		0 * 20 =		
Number of inter		IS									0 * 10 =		
Number of passi											0 * 10 =		
Number of fluel	ess gas fir	es									0 * 40 =	0.0000	(7c)
												ges per hour	
Infiltration du	e to chimne	ys, flues a	and fans	= (6a)+(6b)-	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000	
Pressure test												Yes	
Measured/design												3.0000	
Infiltration ra												0.1500	
Number of sides	sheltered											3	(19)
Shelter factor								(20) = 1 -	[0.075 x	(19)] =	0.7750	(20)
Infiltration ra	te adjusted	l to include	e shelter f	actor					(2	1) = (18) x	(20) =	0.1163	(21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.500		(22)
Wind speed Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.125	0 1.1/50	(22a
Wind factor	1.2750			1.1000 0.1279	1.0750 0.1250	0.9500	0.9500	0.9250	1.0000 0.1163	1.0750 0.1250	0.130		
Wind factor	1.2750 0.1482	1.2500 0.1453	1.2250 0.1424	0.1279									
Wind factor Adj infilt rate Balanced mecha:	1.2750 0.1482 nical venti	1.2500 0.1453 lation with	1.2250 0.1424	0.1279									(22b
Wind factor Adj infilt rate	1.2750 0.1482 nical venti entilation:	1.2500 0.1453 lation with	1.2250 0.1424 h heat reco	0.1279 very	0.1250	0.1104	0.1104	0.1075				8 0.1366	(22b (23a

Element				Gross	Openings	Net	Area	U-value	A x U	K-	value	АхК	
				m2	m2		m2	W/m2K	W/K	k	J/m2K	kJ/K	
Opening Type 1	(Uw = 1.20))				з.	6000	1.1450	4.1221				(27)
External Wall 1	1			10.8800	3.6000	7.	2800	0.1600	1.1648	190	.0000	1383.2000	(29a
External Roof 1	1			8.5000		8.	5000	0.1100	0.9350	g	0000	76.5000	(30)
Total net area	of externa	l elements	Aum(A, m2)			19.	3800						(31)
Fabric heat los	ss, W/K = S	um (A x U)					(26)(30) + (32) =	6.2219				(33)
Party Wall 1							6400	0.0000	0.0000		.0000		
Party Floor 1							1000				.0000	804.0000	
Internal Wall 1	1					21.	6000			9	9.0000	194.4000	(32c
Heat capacity (Cm = Sum(A	x k)						(28)	. (30) + (32)	+ (32a)	.(32e) =	9267.7000	(34)
Thermal mass pa	arameter (T	MP = Cm / T	'FA) in kJ/m	2K								461.0796	(35)
Thermal bridges	s (Sum(L x	Psi) calcul	ated using	Appendix K)								8.8280	(36)
Total fabric he	eat loss									(33)	+ (36) =	15.0499	(37)
Ventilation hea	at loss cal	culated mon	thly (38)m	= 0.33 x (2	5)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m	4.7588	4.7067	4.6547	4.3944	4.3424	4.0822	4.0822	4.0301	4.1863	4.3424	4.4465	4.5506	(38)
(38)m Heat transfer o		4.7067	4.6547	4.3944	4.3424	4.0822	4.0822	4.0301	4.1863	4.3424	4.4465	4.5506	(38)
		4.7067 19.7567	4.6547	4.3944	4.3424 19.3923	4.0822 19.1321	4.0822 19.1321	4.0301 19.0800	4.1863 19.2362	4.3424	4.4465	19.6005	(39)
	coeff 19.8087	19.7567											(39)
Heat transfer o	coeff 19.8087	19.7567										19.6005	(39)
Heat transfer of Average = Sum(3	coeff 19.8087 39)m / 12 =	19.7567	19.7046	19.4444	19.3923	19.1321	19.1321	19.0800	19.2362	19.3923	19.4964	19.6005 19.4314	(39) (39)
Heat transfer o	coeff 19.8087 39)m / 12 = Jan	19.7567 Feb	19.7046 Mar	19.4444 Apr	19.3923 May	19.1321 Jun	19.1321 Jul	19.0800 Aug	19.2362 Sep	19.3923 Oct	19.4964 Nov	19.6005 19.4314 Dec	(39) (39) (40)
Heat transfer of Average = Sum(3 HLP	coeff 19.8087 39)m / 12 = Jan	19.7567 Feb	19.7046 Mar	19.4444 Apr	19.3923 May	19.1321 Jun	19.1321 Jul	19.0800 Aug	19.2362 Sep	19.3923 Oct	19.4964 Nov	19.6005 19.4314 Dec 0.9752	(39) (39) (40)

4. Water heating energy requirements (kWh/year) Assumed occupancy 1.0315 (42) 58.6985 (43) Average daily hot water use (litres/day) Feb Mar Jan Apr May Jun Jul Aug Sep Oct Nov Dec
 Jan
 Feb
 Mar

 Daily hot water use
 64.5683
 62.2204
 59.8724

 Energy conte
 95.7529
 83.7461
 86.4185

 Energy content (annual)
 Distribution loss (46)m = 0.15 x (45)m
 55.1765 59.8724 62.2204 78.2292 85.3933 Total = Sum(45)m = 64.5683 (44) 92.7316 (45) 923.5552 (45) 57.5245 75.3417 52.8286 52.8286 57.8067 55.1765 57.5245 62.3827 66.3340 67.1263

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

	14.3629	12.5619	12.9628	11.3013	10.8438	9.3574	8.6710	9.9501	10.0689	11.7344	12.8090	13.9097	(46)
Water storage	loss:												
Store volume												1.0000	(47)
a) If manufa	cturer decla	ared loss fa	actor is kno	wn (kWh/da	ıy):							0.0600	(48)
Temperature	factor from	m Table 2b										1.0000	(49)
Enter (49) or	(54) in (55	5)										0.0600	(55)
Total storage	loss												
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(56)
If cylinder c													
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re													
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar input	(sum of	months) = S	um(63)m =	0.0000	(63)
Output from w	/h												
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	
								Total per	year (kW	h/year) = S	um(64)m =	1219.3512	(64)
Heat gains fr													
	51.9358	45.9985	48.8321	44.5007	44.1351	40.1918	39.3186	42.1540	41.7691	46.1091	47.8429	50.9312	(65)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts
 Metabolic gains (Table 5), Watts

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 G

 (66)m
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 51.5757
 Jul Aug 51.5757 Sep 51.5757 Oct 51.5757 Nov 51.5757 Dec 51.5757 (66) 51.5757 2.5798 3.3534 4.5009 5.7149 6.6702 7.1107 (67) 56.7969 56.0091 57.9943 62.2207 67.5557 72.5699 (68) 28.1576 28.1576 28.1576 0.0000 0.0000 28.1576 0.0000 28.1576 0.0000 28.1576 (69) 0.0000 (70) Pumps, fans 0.0000 0.0000 0 Losses e.g. evaporation (negative values) (Table 5) -41 2605 -41.2605 -41.2605 -41 0.0000 -41.2605 -41 -41.2605 -41.2605 -41.2605 -41.2605 -41.2605 (71) 56.6586 58.0126 61.9746 66.4484 68.4559 (72) Total internal gains 191.1169 189.7752 183.8267 174.5584 165.7829 156.8289 150.6971 154.4937 158.9805 168.3829 179.1470 186.6091 (73)

6. Solar ga	ins		

[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce: facto Table	or	Gains W	
South			3.60	00	46.7521		0.3600	0	.7000	0.77	00	29.3925	(78)
Solar gains Total gains	29.3925 220.5094	48.1374 237.9126	61.3185 245.1452	69.3032 243.8616	72.2183 238.0012	69.5002 226.3291	67.9060 218.6030	65.9461 220.4398	64.0544 223.0350	51.9207 220.3037	34.8402 213.9872	25.3979 212.0070	

7. Mean inter	nal tempera	ture (heati	ng season)									
Temperature d	uring heati	ng periods	in the livi	ng area fro	n Table 9, '							21.0000 (8
Utilisation f												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	129.9610	130.3034	130.6476	132.3961	132.7515	134.5572	134.5572	134.9243	133.8291	132.7515	132.0427	131.3414
alpha	9.6641	9.6869	9.7098	9.8264	9.8501	9.9705	9.9705	9.9950	9.9219	9.8501	9.8028	9.7561
util living a												
	0.9933	0.9842	0.9602	0.8905	0.7452	0.5405	0.3851	0.3981	0.5937	0.8629	0.9775	0.9951 (8
MIT	20.6811	20.7604	20.8563	20.9482	20.9914	20.9996	21.0000	21.0000	20.9991	20.9669	20.8233	20.6620 (8
Th 2	20.0954	20.0976	20.0998	20.1106	20.1128	20.1237	20.1237	20.1258	20.1193	20.1128	20.1084	20.1041 (8
util rest of !	house											
	0.9897	0.9762	0.9416	0.8491	0.6802	0.4668	0.3084	0.3225	0.5188	0.8096	0.9648	0.9924 (8
MIT 2	19.8254	19.9035	19.9937	20.0794	20.1092	20.1236	20.1237	20.1258	20.1191	20.0953	19.9737	19.8146 (9
Living area f	raction								fLA =	Living area	a / (4) =	0.8458 (9
MIT	20.5491	20.6283	20.7233	20.8142	20.8554	20.8645	20.8648	20.8652	20.8634	20.8324	20.6922	20.5313 (9
Temperature a	djustment											0.3000
adjusted MIT	20.8491	20.9283	21.0233	21.1142	21.1554	21.1645	21.1648	21.1652	21.1634	21.1324	20.9922	20.8313 (9
8. Space heat	ing require	 ment										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisation	0.9928	0.9836	0.9606	0.8952	0.7560	0.5542	0.3995	0.4124	0.6074	0.8699	0.9774	0.9947 (9
Useful gains	218.9223	234.0214	235.4811	218.2987	179.9346	125.4355	87.3292	90.9119	135.4821	191.6347	209.1484	210.8814 (9
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000 (9
Heat loss rat												
	327.8163	316.6652	286.1754	237.4979	183.3618	125.5932	87.3348	90.9196	135.8724	204.2486	270.8488	325.9825 (9
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000 (9
Space heating												
	81.0172	55.5366	37.7166	13.8235	2.5498	0.0000	0.0000	0.0000	0.0000	9.3847	44.4243	85.6352 (9
Space heating												330.0878 (9
Space heating	per m2									(98)	/ (4) =	16.4223 (9

CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 09 Jan 2014

8c. Space cooling requirement Not applicable

9b. Energy requ													
Fraction of spa Fraction of spa Efficiency of m Efficiency of s Space heating m	ace heat fro ace heat fro main space h secondary/su	m secondar; m main sys eating sys	y/supplemen tem(s) tem 1 (in %	tary system)								0.0000 1.0000 100.0000 0.0000 330.0878	(202) (206) (208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating 1	81.0172	55.5366		13.8235	2.5498	0.0000	0.0000	0.0000	0.0000	9.3847	44.4243	85.6352	(98)
	100.0000	100.0000	100.0000) 100.0000	100.0000	0.0000	0.0000	0.0000	0.0000	100.0000	100.0000	100.0000	(210)
Space heating f	81.0172	55.5366		13.8235	2.5498	0.0000	0.0000	0.0000	0.0000	9.3847	44.4243	85.6352	(211)
Water heating 1	requirement 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Annual water he Fraction of hea Factor for cont Distribution 1c Water heat from Electricity use Annual totals & Space heating f	at from comm trol and cha oss factor (m Heat pump ed for heat kWh/year fuel - main	unity Heat rging metho Table 12c) = (64) x 1 distributio system	od (Table 4) for commun .00 x 1.05	ity heating	community wat g system	cer heating						1219.3512 1.0000 1.0500 1.2000 1536.3825 15.3638 330.0878	(303a) (305a) (306) (310a) (313) (211)
Space heating f	fuel - secon	dary										0.0000	(215)
mechanical v Total electrici	ithHeatRecov ventilation ity for the	ery, Databa fans (SFP :	= 0.7		2500, SFP =	= 0.7875)						52.1399 52.1399 122.1807	(231)
-	r lighting (calculated											(===)
Energy saving/c PV Unit 0 (0.80 Total delivered	generation t 0 * 0.25 * 9	calculated echnologie: 51 * 0.80)	s (Appendice		i Ω)					-152.0986		-152.0986 1888.6924	(233)
Energy saving/c PV Unit 0 (0.80	generation t 0 * 0.25 * 9 d energy for 	calculated echnologie: 51 * 0.80) all uses ons	s (Appendico =	es M ,N and								-152.0986	(233)
Energy saving/d PV Unit 0 (0.80 Total delivered 12a. Carbon dic	generation t 0 * 0.25 * 9 d energy for 	calculated echnologie: 51 * 0.80) all uses ons	s (Appendico =	es M ,N and				Energy kWh/year		ion factor kg CO2/kWh	k	-152.0986 1888.6924 Emissions cg CO2/year	(233) (238)
Energy saving/g PV Unit 0 (0.86 Total delivered 12a. Carbon di Space heating -	generation t 0 * 0.25 * 9 d energy for 	calculated echnologie: 51 * 0.80) all uses ons 	s (Appendico =	es M ,N and				Energy		ion factor	k	-152.0986 1888.6924 Emissions cg CO2/year 171.3156	(233) (238) (261)
Energy saving/c PV Unit 0 (0.80 Total delivered 12a. Carbon dic Space heating - Efficiency of P Space heating f Electrical energy Total CO2 assoc	<pre>generation t 0 * 0.25 * 9 d energy for</pre>	calculated echnologie: 51 * 0.80) all uses 	s (Appendice = 	es M ,N and				Energy kWh/year		ion factor kg CO2/kWh	k	-152.0986 1888.6924 Emissions cg CO2/year	(233) (238) (238) (261) (367a) (367) (372)
Energy saving/g PV Unit 0 (0.80 Total delivered 12a. Carbon dic Space heating - Efficiency of P Space heating f Electrical ener Total CO2 assoc (negative valu Space heating -	<pre>generation t 0 * 0.25 * 9 d energy for oxide emissi</pre>	calculated echnologie: 51 * 0.80) all uses 	s (Appendice = 	es M ,N and				Energy kWh/year 330.0878 614.5530		ion factor kg CO2/kWh 0.5190 0.5190	k	-152.0986 1888.6924 Emissions cg CO2/year 171.3156 250.0000 318.9530 7.9738 326.9268 0.0000	(233) (238) (238) (367a) (367a) (372) (373) (263)
Energy saving/c PV Unit 0 (0.80 Total delivered 12a. Carbon dic Efficiency of P Space heating f Electrical ener Total CO2 assoc (negative val Space heating - Space and water Pumps and fans	<pre>generation t 0 * 0.25 * 9 d energy for oxide emissi</pre>	calculated echnologie: 51 * 0.80) all uses 	s (Appendice = 	es M ,N and				Energy kWh/year 330.0878 614.5530 15.3638 0.0000 52.1399		ion factor kg CO2/kWh 0.5190 0.5190 0.5190 0.0000 0.5190	k	-152.0986 1888.6924 Emissions cg CO2/year 171.3156 250.0000 318.9530 7.9738 326.9268 0.0000 498.2424 27.0606	(233) (238) (238) (367a) (367) (372) (373) (263) (265) (267)
Energy saving/g PV Unit 0 (0.80 Total delivered 12a. Carbon dic Space heating - Efficiency of P Electrical ener Total CO2 assoc (negative valu Space heating - Space heating - Space heating - Space and water Pumps and fans Energy for ligh	<pre>generation t 0 * 0.25 * 9 d energy for - main syste heat source from Heat pu rgy for heat ciated with ue allowed s - secondary r heating hting</pre>	calculated echnologie: 51 * 0.80) all uses ons m 1 Heat pump mp distribut. community : ince DFEE	s (Appendico = 	es M ,N and				Energy kWh/year 330.0878 614.5530 15.3638 0.0000		ion factor kg CO2/kWh 0.5190 0.5190 0.5190 0.0000	k	-152.0986 1888.6924 Emissions cg C02/year 171.3156 250.0000 318.9530 7.9738 326.9268 0.0000 498.2424	(233) (238) (238) (367a) (367) (372) (373) (263) (265) (267)
Energy saving/c PV Unit 0 (0.80 Total delivered 12a. Carbon dic Efficiency of P Space heating f Electrical ener Total CO2 assoc (negative val Space heating - Space and water Pumps and fans	<pre>generation t 0 * 0.25 * 9 d energy for - main syste heat source from Heat pu rgy for heat clated with ue allowed s - secondary r heating hting /generation year</pre>	calculated echnologie: 51 * 0.80) all uses 	s (Appendice = ion systems <= TFEE) es	es M ,N and				Energy kWh/year 330.0878 614.5530 15.3638 0.0000 52.1399		ion factor kg CO2/kWh 0.5190 0.5190 0.5190 0.0000 0.5190	k	-152.0986 1888.6924 Emissions cg CO2/year 171.3156 250.0000 318.9530 7.9738 326.9268 0.0000 498.2424 27.0606	(233) (238) (238) (367) (367) (372) (373) (263) (265) (267) (268) (269) (272)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

LCULATION OF TH	ARGET EMI	SSIONS	09 Jan 201	4	9.92, Januar	y 2014)							
. Overall dwell:													
								Area	Stor	ey height		Volume	
round floor otal floor area welling volume	TFA = (1	a)+(1b)+(1c)+(1d)+(1e)	(ln)	2	0.1000		(m2) 20.1000 (3		(m) 2.7000		(m3) 54.2700 54.2700	(4)
. Ventilation ra													
					main heating	s	econdary heating		other	tota	ıl m3	per hour	
Number of chimnes Number of open f Number of interma Number of passive Number of flueles	lues ittent fa: e vents				0	+ +	0	+ +	0 = 0 =		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0000 0.0000 20.0000 0.0000 0.0000	(6b) (7a) (7b)
nfiltration due ressure test easured/design <i>l</i> nfiltration rate umber of sides :	AP50 e	eys, flues	and fans	= (6a)+(6b)	+(7a)+(7b)+(7c) =				20.0000	Air changes / (5) =	0.3685 Yes 5.0000 0.6185	(8)
helter factor nfiltration rate	e adjuste	d to includ	e shelter f	actor					(20) = 1 - (2	[0.075 x 1) = (18) >		0.7750 0.4794	(20)
	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
dj infilt rate	0.6112	0.5992 0.6795	0.5872	0.5273 0.6390	0.5153	0.4554 0.6037	0.4554 0.6037	0.4434 0.5983		0.5153 0.6328	0.5393 0.6454	0.5632 0.6586	
													()
. Heat losses an	nd heat l	oss paramet	er										
lement ER Opening Type xternal Wall 1	(Uw = 1.	40)		Gross m2 10.8800	Openings m2 3.6000	3	m2 .6000 .2800	U-value W/m2K 1.3258 0.1800	A x W/ 4.772 1.310	K k 7	value J/m2K	АхК kJ/K	
xternal Roof 1 otal net area o:			Aum(A, m2)	8.5000			.3800	0.1300	1.105				(30) (31)
abric heat loss, hermal mass para			FA) in kJ/m	12K			(26)(3	0) + (32)	= 7.188	1		250.0000	(33)
hermal bridges otal fabric heat	(Sum(L x									(33)	+ (36) =	6.9580 14.1461	(36)
entilation heat				= 0.33 x (2									
38)m	Jan 12.2995	Feb 12.1696	Mar 12.0423	Apr 11.4443	May 11.3324	Jun 10.8116	Jul 10.8116	Aug 10.7151	Sep 11.0122	Oct 11.3324	Nov 11.5587	Dec 11.7954	(38)
verage = Sum(39)	26.4456	26.3157	26.1884	25.5904	25.4785	24.9577	24.9577	24.8612	25.1583	25.4785	25.7049	25.9415 25.5899	
LP (LP (average) Days in month	Jan 1.3157	Feb 1.3092	Mar 1.3029	Apr 1.2732	May 1.2676	Jun 1.2417	Jul 1.2417	Aug 1.2369	Sep 1.2517	Oct 1.2676	Nov 1.2788	Dec 1.2906 1.2731	
ayo in Monen	31	28	31	30	31	30	31	31	30	31	30	31	(41)
. Water heating	energy r	equirements	(kWh/year)										
ssumed occupancy verage daily hot	У											1.0315 58.6985	
aily hot water 1	Jan use	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	64.5683 95.7529 annual)	62.2204 83.7461	59.8724 86.4185	57.5245 75.3417	55.1765 72.2922	52.8286 62.3827	52.8286 57.8067	55.1765 66.3340	57.5245 67.1263	59.8724 78.2292 Total = Su	62.2204 85.3933 um(45)m =	64.5683 92.7316 923.5552	(45)
nergy content (a			12.9628	11.3013	10.8438	9.3574	8.6710	9.9501	10.0689	11.7344	12.8090	13.9097	(46)
nergy content (a istribution loss	14.3629	12.5619	12.9020										
nergy content (a istribution loss	14.3629 ss: rer decla: ctor from	red loss fa Table 2b		wn (kWh/da	ау):							1.0000 0.2134 0.5400 0.1152	(48) (49)

(78)

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

If cylinder o	contains ded:	icated sola	r storage										
-1	3.5715	3.2259	3.5715	3.4563	3.5715	3.4563	3.5715	3.5715	3.4563	3.5715	3.4563	3.5715	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re	equired for v	water heati	ng calculate	ed for each	month								
	122.5868	107.9832	113.2524	101.3100	99.1261	88.3509	84.6406	93.1679	93.0945	105.0631	111.3616	119.5655	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar input	(sum of s	months) = Si	um(63)m =	0.0000	(63)
Output from w	/h												
	122.5868	107.9832	113.2524	101.3100	99.1261	88.3509	84.6406	93.1679	93.0945	105.0631	111.3616	119.5655	
								Total per	year (kW	h/year) = Si	um(64)m =	1239.5025	(64)
Heat gains fi	com water hea	ating, kWh/m	month										
	53.3049	47.2352	50.2013	45.8257	45.5043	41.5169	40.6878	43.5232	43.0941	47.4783	49.1679	52.3004	(65)

							-
5.	Internal	gains	(see	Table	5 a	nd 5a)	
							-

Metabolic gains	(Table 5),	Watts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757 (6	66)
Lighting gains	(calculated	in Appendi	x L, equati	on L9 or L	9a), also s	ee Table 5							
	6.9184	6.1448	4.9973	3.7833	2.8281	2.3876	2.5798	3.3534	4.5009	5.7149	6.6702	7.1107 (6	67)
Appliances gain	s (calculat	ed in Appen	dix L, equa	tion L13 o:	r L13a), al	so see Tabl	e 5						
	75.9197	76.7075	74.7222	70.4958	65.1608	60.1466	56.7969	56.0091	57.9943	62.2207	67.5557	72.5699 (6	68)
Cooking gains (calculated .	in Appendix	L, equatio	n L15 or L	15a), also :	see Table 5							
	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576	28.1576 (6	69)
Pumps, fans	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000	3.0000 (7	70)
Losses e.g. eva	poration (n	egative val	ues) (Table	5)									
			-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605 (7	71)
Water heating g	ains (Table	5)											
	71.6464	70.2905	67.4748	63.6469	61.1616	57.6623	54.6879	58.4989	59.8529	63.8149	68.2887	70.2962 (7	72)
Total internal													
	195.9572	194.6155	188.6670	179.3987	170.6232	161.6692	155.5374	159.3340	163.8208	173.2232	183.9873	191.4494 (7	73)

6. Solar gains						
[Jan]	Area m2	Solar flux Table 6a W/m2	g Specific data or Table 6b	FF Specific data or Table 6c	Access factor Table 6d	Gains W
South	3.6000	46.7521	0.6300	0.7000	0.7700	51.4369

 Solar gains
 51.4369
 84.2405
 107.3074
 121.2806
 126.3819
 121.6254
 118.8354
 115.4057
 112.0952
 90.8612
 60.9703
 44.4463
 (83)

 Total gains
 247.3941
 278.8560
 295.9744
 300.6794
 297.0051
 283.2946
 274.3728
 274.7397
 275.9161
 264.0845
 244.9576
 235.8957
 (84)

7. Mean intern	nal temperat	ure (heatin	g season)									
Temperature di Utilisation fa						'hl (C)						21.0000 (85)
Utilisation ia	2						71		0	0+		D
* • • •	Jan 52.7813	Feb 53.0418	Mar	Apr 54.5452	May 54.7847	Jun	Jul 55.9280	Aug 56.1450	Sep 55.4820	Oct 54.7847	Nov E4 2022	Dec
tau			53.2997			55.9280					54.3023	53.8070
alpha	4.5188	4.5361	4.5533	4.6363	4.6523	4.7285	4.7285	4.7430	4.6988	4.6523	4.6202	4.5871
util living a												
	0.9666	0.9431	0.9054	0.8344	0.7196	0.5468	0.3971	0.4124	0.6007	0.8245	0.9376	0.9716 (86)
MIT	20.0815	20.2704	20.4919	20.7315	20.8937	20.9779	20.9960	20.9952	20.9640	20.7839	20.4173	20.0587 (87)
Th 2	20.3421	20.3454	20.3485	20.3634	20.3662	20.3792	20.3792	20.3816	20.3742	20.3662	20.3606	20.3547 (88)
util rest of 1	nouse											
	0.9616	0.9351	0.8922	0.8123	0.6844	0.4986	0.3423	0.3585	0.5536	0.7977	0.9275	0.9674 (89)
MIT 2	19.4970	19.6838	19.9004	20.1390	20.2859	20.3655	20.3773	20.3793	20.3507	20.1917	19.8417	19.4851 (90)
Living area f:	raction								fLA =	Living area	(4) =	0.8458 (91)
MIT	19.9913	20.1799	20.4007	20.6402	20.8000	20.8834	20,9006	20,9002	20.8694	20.6925	20.3285	19.9702 (92)
Temperature ad	djustment											0.6000
adjusted MIT	20.5913	20.7799	21.0007	21.2402	21.4000	21.4834	21.5006	21.5002	21.4694	21.2925	20.9285	20.5702 (93)

8. Space heating requirement

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation	0.9636	0.9406	0.9054	0.8421	0.7402	0.5826	0.4403	0.4551	0.6340	0.8356	0.9365	0.9689	(94)
Useful gains	238.3838	262.2818	267.9676	253.2109	219.8326	165.0590	120.8066	125.0319	174.9223	220.6790	229.4059	228.5513	(95)
Ext temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	(96)
Heat loss rate	e W												
	430.8338	417.8910	379.7497	315.7894	247.1416	171.7940	122.3071	126.7965	185.4011	272.4298	355.4603	424.6683	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	143.1827	104.5694	83.1659	45.0565	20.3179	0.0000	0.0000	0.0000	0.0000	38.5026	90.7592	145.9110	(98)
Space heating												671.4652	(98)
Space heating	per m2									(98)	/ (4) =	33.4062	(99)

8c. Space cooling requirement

Not applicable

9a. Energy requirements - Individual heating systems, including micro-CHP

CALCULATION OF TARGET EMISSIONS 09 Jan 2014

Fraction of space heat from Fraction of space heat from Efficiency of main space he Efficiency of secondary/sug Space heating requirement	n main sys eating sys	stem(s) stem 1 (in	 %)	m (Table 11))						0.0000 1.0000 88.5000 0.0000 758.7178	(202) (206) (208)
Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	104.5694	83.1659	45.0565	20.3179	0.0000	0.0000	0.0000	0.0000	38.5026	90.7592	145.9110	(98)
Space heating efficiency (m 88.5000	nain heati 88.5000	ing system 88.5000	1) 88.5000	88.5000	0.0000	0.0000	0.0000	0.0000	88.5000	88.5000	88.5000	(210)
Space heating fuel (main he 161.7884 1	eating sys	stem) 93.9728	50.9114	22.9581	0.0000	0.0000	0.0000	0.0000	43.5057	102.5527	164.8712	(211)
Water heating requirement												
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating requirement												
	107.9832	113.2524	101.3100	99.1261	88.3509	84.6406	93.1679	93.0945	105.0631	111.3616	119.5655 74.8000	
(217)m 80.2078	79.7074	78.9853	77.7971	76.4270	74.8000	74.8000	74.8000	74.8000	77.3977	79.2537	80.3250	
Fuel for water heating, kWh 152.8365	1/month 135.4744	143.3841	130.2234	129.7004	118.1162	113.1559	124.5560	124.4579	135.7445	140.5128	148.8522	(219)
Water heating fuel used Annual totals kWh/year											1597.0144	(219)
Space heating fuel - main s Space heating fuel - second											758.7178	
1 5	-										0.0000	(215)
Electricity for pumps and f central heating pump main heating flue fan Total electricity for the a Electricity for lighting (c Total delivered energy for	above, kWł calculatec		ix L)								39.0000 45.0000 84.0000 122.1807 2561.9128	(230e) (231) (232)
12a. Carbon dioxide emissio	ons - Indi	ividual hea	ting system	s including	micro-CHP							
							Energy		ion factor		Emissions	

	Energy	Emission factor	Emissions	
	kWh/year	kg CO2/kWh	kg CO2/year	
Space heating - main system 1	758.7178	0.2160	163.8830	(261)
Space heating - secondary	0.0000	0.0000	0.0000	(263)
Water heating (other fuel)	1597.0144	0.2160	344.9551	(264)
Space and water heating			508.8381	(265)
Pumps and fans	84.0000	0.5190	43.5960	(267)
Energy for lighting	122.1807	0.5190	63.4118	(268)
Total CO2, kg/m2/year			615.8459	(272)
Emissions per m2 for space and water heating			25.3153	(272a)
Fuel factor (electricity)			1.5500	
Emissions per m2 for lighting			3.1548	(272b)
Emissions per m2 for pumps and fans			2.1690	(272c)
Target Carbon Dioxide Emission Rate (TER) = (25.3153 * 1.55) + 3.1548 + 2.1690, rd	ounded to 2 d.p.		44.5600	(273)

CALCULATION OF FABRIC ENERGY EFFICIENCY 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF FABRIC ENERGY EFFICIENCY 09 Jan 2014

1. Overall dwelling dimensions						
		Area	Stor	rey height		Volume
		(m2)		(m)		(m3)
Ground floor		20.1000 (1b)	х	2.7000 (2b)	=	54.2700 (1b) - (3b)
Total floor area TFA = $(1a) + (1b) + (1c) + (1d) + (1e) (1n)$	20.1000					(4)
Dwelling volume		(3a)+(3h)+(3c)	+(3d)+(3e)(3	n) =	54.2700 (5)

..... 2 Ventilatio

					main	se	condary	c	other	tota	1 m3	3 per hour	
					heating	1	heating					-	
Number of chimne	eys				õ	+	õ	+	0 =		0 * 40 =	0.0000 ((6a)
Number of open f	Elues				0	+	0	+	0 =		0 * 20 =	0.0000 ((6b)
Number of intern	mittent fan	s									2 * 10 =	20.0000 ((7a)
Number of passiv	ve vents										0 * 10 =	0.0000 ((7b)
Number of fluele	ess gas fir	es									0 * 40 =	0.0000 ((7c)
											Air changes	s per hour	
Infiltration due Pressure test Measured/design		ys, flues a	and fans =	= (6a)+(6b)+	(7a)+(7b)+(7c) =				20.0000	/ (5) =	0.3685 (Yes 3.0000	(8)
Infiltration rat Number of sides												0.5185 (3 ((18) (19)
Shelter factor								((20) = 1 -	[0.075 x	(19)] =	0.7750 ((20)
			ehaltar f:	actor					(21) = (18) x	(20) =	0.4019 ((01)
Infiltration rat	te adjusted	to include	5 SHELLEL LE	10001					(21) - (10) A	,		(21)
	te adjusted Jan	Feb	Mar		Mav	Jun	Jul	Aug			Nov	Dec	(21)
Infiltration rat	Jan			Apr 4.4000	May 4.3000	Jun 3.8000	Jul 3.8000	Aug 3.7000	Sep 4.0000	Oct 4.3000		Dec	
Infiltration rat Wind speed Wind factor	-	Feb	Mar	Apr					Sep	Oct	Nov		(22)
Infiltration rat	Jan 5.1000	Feb 5.0000	Mar 4.9000	Apr 4.4000	4.3000	3.8000	3.8000	3.7000	Sep 4.0000	Oct 4.3000	Nov 4.5000	Dec 4.7000 ((22) (22a)

3. Heat losses and heat loss parameter

Element				Gross m2	Openings m2		m2	U-value W/m2K	A x U W/F	t k	-value J/m2K	A x K kJ/K	
Opening Type 1 (External Wall 1 External Roof 1 Total net area o				10.8800 8.5000	3.6000	7. 8.	.6000 .2800 .5000 .3800	1.1450 0.1600 0.1100	4.1221 1.1648 0.9350	190	0.0000 0.0000	1383.2000 76.5000	
Fabric heat loss Party Wall 1 Party Floor 1 Internal Wall 1	s, W/K = Sı	um (A x U)				20.	(26)(3 .6400 .1000 .6000	30) + (32) = 0.0000	6.2219	140 40	0.0000 0.0000 0.0000	6809.6000 804.0000 194.4000	(32d)
Heat capacity Cm Thermal mass par Thermal bridges Total fabric hea	ameter (TM (Sum(L x H	MP = Cm / T						(28)	.(30) + (32)		.(32e) = + (36) =	9267.7000 461.0796 8.8280 15.0499	(35) (36)
Ventilation heat	: loss cald	culated mon	thly (38)m	= 0.33 x (2	25)m x (5)								
(38)m Heat transfer co	Jan 11.3053	Feb 11.2140	Mar 11.1246	Apr 10.7043	May 10.6257	Jun 10.2596	Jul 10.2596	Aug 10.1918	Sep 10.4006	Oct 10.6257	Nov 10.7847	Dec 10.9510	(38)
	26.3553	26.2640	26.1745	25.7542	25.6756	25.3096	25.3096	25.2418	25.4506	25.6756	25.8347	26.0010 25.7539	
HLP HLP (average)	Jan 1.3112	Feb 1.3067	Mar 1.3022	Apr 1.2813	May 1.2774	Jun 1.2592	Jul 1.2592	Aug 1.2558	Sep 1.2662	Oct 1.2774	Nov 1.2853	Dec 1.2936 1.2813	
Days in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)

4. Water heati	ng energy r	equirements	(kWh/year)									
Assumed occupa Average daily		se (litres/	day)									1.0315 (42) 58.6985 (43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Daily hot wate	r use											
	64.5683	62.2204	59.8724	57.5245	55.1765	52.8286	52.8286	55.1765	57.5245	59.8724	62.2204	64.5683 (44)
Energy conte	95.7529	83.7461	86.4185	75.3417	72.2922	62.3827	57.8067	66.3340	67.1263	78.2292	85.3933	92.7316 (45)
Energy content	(annual)									Total = Su	um (45) m =	923.5552 (45)
Distribution 1	.oss (46)m	$= 0.15 \times (4)$	5)m									
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (46)
Water storage	loss:											
Total storage	loss											
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (56)

CALCULATION OF FABRIC ENERGY EFFICIENCY 09 Jan 2014

If cylinder cor Primary loss Heat gains from	0.0000 0.0000 n water hea	0.0000	0.0000 0.0000 nonth	0.0000 0.0000 16.0101	0.0000 0.0000 15.3621	0.0000 0.0000 13.2563	0.0000 0.0000 12.2839	0.0000 0.0000 14.0960	0.0000 0.0000 14.2643	0.0000 0.0000 16.6237	0.0000 0.0000 18.1461	0.0000 0.0000 19.7055	(59)
5. Internal gai	ins (see Ta	ble 5 and 5	āa)										
Metabolic gains	s (Table 5)		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m Lighting gains				51.5757 tion L9 or	51.5757 L9a), also :		51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	(66)
Appliances gair	ns (calcula			ation L13				3.3534	4.5009	5.7149	6.6702	7.1107	
Cooking gains		in Appendi		ion L15 or	L15a), also	see Table 5		56.0091	57.9943	62.2207	67.5557	72.5699	
Pumps, fans Losses e.g. eva	0.0000	28.1576 0.0000	0.0000	0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	
	-41.2605	-41.2605	-41.2605		-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	(71)
Total internal	27.3488		24.6827	22.2363	20.6480	18.4115	16.5107	18.9462	19.8116	22.3437	25.2029	26.4858	(72)
		147.8072	142.8749	134.9881	127.1095	119.4185	114.3601	116.7814	120.7795	128.7520	137.9015	144.6391	(73)
6. Solar gains													
[Jan]				m2	W/m2	Specif or T	able 6b			Acces facto Table (or	Gains W	
South			3.60	000	46.7521		0.3600	0	.7000	0.770	00	29.3925	(78)
	29.3925	48.1374	61.3185	69.3032	72.2183	69.5002	67.9060	65.9461	64.0544 184.8339	51.9207 180.6727	34.8402 172.7416	25.3979 170.0369	
7. Mean interna	al temperat	ure (heatin	ng season)										
Temperature dur Utilisation fac	ring heatin	g periods i	in the livin	ng area fro	om Table 9, 1							21.0000	(85)
tau alpha	Jan 97.6792 7.5119	Feb 98.0187 7.5346	Mar 98.3538 7.5569	Apr	May 100.2649	Jun 101.7149 7.7810	Jul 101.7149 7.7810	Aug 101.9881 7.7992	Sep 101.1514 7.7434	Oct 100.2649 7.6843	Nov 99.6475 7.6432	Dec 99.0102 7.6007	
util living are	ea 0.9993	0.9984	0.9957	0.9861	0.9479	0.8076	0.6058	0.6286	0.8617	0.9834	0.9981	0.9995	(86)
MIT Th 2 util rest of ho	20.2780 19.8321	20.3740 19.8356	20.5143 19.8391	20.6956 19.8555	20.8623 19.8586	20.9739 19.8729	20.9974 19.8729	20.9965 19.8756	20.9548 19.8674	20.7530 19.8586	20.4845 19.8524	20.2638 19.8459	
	0.9989	0.9973 19.2933	0.9927	0.9753	0.9056	0.6919	0.4539	0.4793 19.8752	0.7625	0.9679	0.9966	0.9992 19.1923	
Living area fra MIT		20.2073	20.3479	20.5307	20.6951	20.8029	20.8239	20.8236		Living area	a / (4) =	0.8458	(91)
Temperature adj adjusted MIT	justment	20.2073	20.3479	20.5307	20.6951	20.8029	20.8239	20.8236	20.7846	20.5883	20.3200	0.0000 20.0985	
8. Space heatir	ng requirem	ent											
	4.3000	Feb 0.9977 195.4968 4.9000	Mar 0.9942 203.0184 6.5000	Apr 0.9824 200.7027 8.9000	May 0.9388 187.1302 11.7000	Jun 0.7896 149.1705 14.6000	Jul 0.5827 106.2030 16.6000	Aug 0.6059 110.7146 16.4000	Sep 0.8457 156.3123 14.1000	Oct 0.9790 176.8729 10.6000	Nov 0.9973 172.2741 7.1000	Dec 0.9993 169.9199 4.2000	(95)
		402.0313	362.4624 1.0000	299.5410 1.0000	230.9550 1.0000	156.9939 0.0000	106.9053 0.0000	111.6591 0.0000	170.1266 0.0000	256.4558 1.0000	341.5343 1.0000	413.3771	
Space heating }	cWh	138.7912		71.1635	32.6057	0.0000	0.0000	0.0000	0.0000	59.2097		1.0000	
Space heating Space heating p											/ (4) =	901.0783 44.8298	(98)
8c. Space cooli	ing require	ment											
Calculated for					Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ext. temp. Heat loss rate	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000	
Utilisation Useful loss Total gains Month fracti	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	237.9100 0.9190 218.6289 258.2365 1.0000	187.2908 0.9712 181.8924 249.9532 1.0000	191.8376 0.9679 185.6855 250.8560 1.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000	(101) (102) (103)
Space cooling & Space cooling Cooled fraction	0.0000	0.0000	0.0000	0.0000	0.0000	28.5175	50.6372	48.4869	0.0000 fC =	0.0000 cooled area	0.0000 a / (4) =	0.0000 127.6416 1.0000	(104)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r17

CALCULATION OF FABRIC ENERGY EFFICIENCY 09 Jan 2014

Intermittency Space cooling	0.0000	e 10b) 0.0000	0.0000	0.0000	0.0000	0.2500	0.2500	0.2500	0.0000	0.0000	0.0000	0.0000	(106)
Space cooling Space cooling Energy for sp Energy for sp Total Dwelling Fabr:	0.0000 per m2 ace heating ace cooling	0.0000 iciency (D	0.0000 FEE)	0.0000	0.0000	7.1294	12.6593	12.1217	0.0000	0.0000	0.0000	0.0000 31.9104 1.5876 44.8298 1.5876 46.4174 46.4	(107) (108) (99) (108) (109)

CALCULATION OF TARGET FABRIC ENERGY EFFICIENCY 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF TARGET FABRIC ENERGY EFFICIENCY 09 Jan 2014

1. Overall dwelling dimensions						
1. Overall dwelling dimensions						
Ground floor		Area (m2) 20.1000 (1b)	Stor x	rey height (m) 2.7000 (2b)	=	Volume (m3) 54.2700 (1b) - (3b)
Total floor area TFA = $(1a) + (1b) + (1c) + (1d) + (1e) \dots (1n)$ Dwelling volume	20.1000	(3a)+(3b	o)+(3c)	+(3d)+(3e)(3n) =	(4) 54.2700 (5)

-----2 Wantilatian mate

2. Ventilation 1	rate											
					main heating		econdary heating		other	total	m3	per hour
Number of chimne	eys				ō	+	ō	+	0 =	0	* 40 =	0.0000 (6a)
Number of open f	Elues				0	+	0	+	0 =	0	* 20 =	0.0000 (6b)
Number of intern	mittent far	15								2	* 10 =	20.0000 (7a)
Number of passiv	ve vents									0	* 10 =	0.0000 (7b)
Number of fluele	ess gas fin	res								0	* 40 =	0.0000 (7c)
										A	ir changes	per hour
Infiltration due Pressure test Measured/design		eys, flues	and fans =	= (6a)+(6b)+	(7a)+(7b)+(7c) =				20.0000 /	(5) =	0.3685 (8) Yes 5.0000
Infiltration rat Number of sides	te											0.6185 (18) 3 (19)
Shelter factor									(20) = 1 -	[0.075 x (19)] =	0.7750 (20)
Infiltration rat	te adjusted	d to includ	e shelter fa	actor					(21) = (18) x	(20) =	0.4794 (21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wind speed	5.1000	5.0000	4.9000	4.4000	4.3000	3.8000	3.8000	3.7000	4.0000	4.3000	4.5000	4.7000 (22)
Wind factor	1.2750	1.2500	1.2250	1.1000	1.0750	0.9500	0.9500	0.9250	1.0000	1.0750	1.1250	1.1750 (22a)
Adj infilt rate												
	0.6112	0.5992	0.5872	0.5273	0.5153	0.4554	0.4554	0.4434	0.4794	0.5153	0.5393	0.5632 (22b)
Effective ac	0.6868	0.6795	0.6724	0.6390	0.6328	0.6037	0.6037	0.5983	0.6149	0.6328	0.6454	0.6586 (25)

A x K kJ/K (27) (29a) (30) (31) 2)

250.0000 (35) 6.9580 (36) 14.1461 (37)

(31) (33)

Element	Gross	Openings	NetArea	U-value	A x U	K-value
	m2	m2	m2	W/m2K	W/K	kJ/m2K
TER Opening Type (Uw = 1.40)			3.6000	1.3258	4.7727	
External Wall 1	10.8800	3.6000	7.2800	0.1800	1.3104	
External Roof 1	8.5000		8.5000	0.1300	1.1050	
Total net area of external elements Au	m(A, m2)		19.3800			
Fabric heat loss, $W/K = Sum (A \times U)$			(26)	.(30) + (32) =	7.1881	
Thermal mass parameter (TMP = Cm / TFA Thermal bridges (Sum(L x Psi) calculat Total fabric heat loss)				(33) + (36)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(38) m	12.2995	12.1696	12.0423	11.4443	11.3324	10.8116	10.8116	10.7151	11.0122	11.3324	11.5587	11.7954 (38)
Heat transfer	coeff											
	26.4456	26.3157	26.1884	25.5904	25.4785	24.9577	24.9577	24.8612	25.1583	25.4785	25.7049	25.9415 (39)
Average = Sum	(39)m / 12 =											25.5899 (39)
	_					_						_
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
HLP	1.3157	1.3092	1.3029	1.2732	1.2676	1.2417	1.2417	1.2369	1.2517	1.2676	1.2788	1.2906 (40)
HLP (average)												1.2731 (40)
Days in month				2.0							2.0	
	31	28	31	30	31	30	31	31	30	31	30	31 (41)

4. Water heating energy requirements (kWh/year)

Assumed occupa	ncy											1.0315	(42)
Average daily	hot water u	se (litres/	day)									58.6985	(43)
			-										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot wate	r use												
-	64.5683	62.2204	59.8724	57.5245	55.1765	52.8286	52.8286	55.1765	57.5245	59.8724	62.2204	64.5683	(44)
Energy conte	95.7529	83.7461	86.4185	75.3417	72.2922	62.3827	57.8067	66.3340	67.1263	78.2292	85.3933	92.7316	(45)
Energy content	(annual)									Total = Su	m (45) m =	923.5552	(45)
Distribution 1	oss (46)m	= 0.15 x (4	5)m										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(46)
Water storage	loss:												
Total storage	loss												
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder co	ntains dedi	cated solar	storage										
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(57)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Heat gains fro	m water hea	ting, kWh/m	onth										

Regs Region: England **Elmhurst Energy Systems** SAP2012 Calculator (Design System) version 4.14r17

	20.3475	17.7960	18.3639	16.0101	15.3621	13.2563	12.2839	14.0960	14.2643	16.6237	18.1461	19.7055
. Internal gai	.ns (see Ta	ble 5 and 5	5a)									
tabolic gains			Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
6)m ghting gains	51.5757	51.5757	51.5757		51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757	51.5757
pliances gain	6.9184	6.1448	4.9973	3.7833	2.8281	2.3876	2.5798 Le 5	3.3534	4.5009	5.7149	6.6702	7.1107
oking gains (75.9197	76.7075	74.7222	70.4958	65.1608	60.1466	56.7969	56.0091	57.9943	62.2207	67.5557	72.5699
mps, fans	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000	28.1576 0.0000
	-41.2605	-41.2605	alues) (Tab: -41.2605		-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605
ter heating g	27.3488	e 5) 26.4822	24.6827	22.2363	20.6480	18.4115	16.5107	18.9462	19.8116	22.3437	25.2029	26.4858
tal internal	gains 148.6595	147.8072	142.8749	134.9881	127.1095	119.4185	114.3601	116.7814	120.7795	128.7520	137.9015	144.6391
Solar gains												
an]			A	rea m2	Solar flux Table 6a		g Iic data	Specific	FF	Acces facto		Gains W
					W/m2	or I	able 6b	or Tab		Table 6		"
outh			3.60				0.6300		.7000	0.770	0	51.4369
lar gains tal gains	51.4369 200.0965	84.2405 232.0477		121.2806 256.2688	126.3819 253.4915		118.8354 233.1955	115.4057 232.1870	112.0952 232.8747	90.8612 219.6132	60.9703 198.8718	44.4463 189.0853
Mean interna	al temperat	ure (heatir	ng season)									
mperature dur ilisation fac	ing heatin	g periods i	in the livin	ng area fro	m Table 9, T							21.0000
.u	Jan 52.7813	Feb 53.0418	Mar 53.2997	Apr 54.5452	May 54.7847	Jun 55.9280	Jul 55.9280	Aug 56.1450	Sep 55.4820	Oct 54.7847	Nov 54.3023	Dec 53.8070
pha il living are		4.5361	4.5533	4.6363	4.6523	4.7285	4.7285	4.7430	4.6988	4.6523	4.6202	4.5871
	0.9845	0.9694	0.9434	0.8907	0.7942	0.6274	0.4637	0.4837	0.6867	0.8907	0.9693	0.9876
T 1 2 til rest of ho	19.8904 19.8286	20.0976 19.8336	20.3467 19.8386	20.6280 19.8619	20.8371 19.8663	20.9609 19.8868	20.9923 19.8868	20.9906 19.8906	20.9373 19.8789	20.6827 19.8663	20.2488 19.8574	19.8653 19.8482
T 2	0.9797	0.9603	0.9264	0.8576	0.7335	0.5326	0.3501	0.3715	0.5968	0.8515	0.9585	0.9837 18.8462
iving area fra IT	19.7307	19.9378	20.1859	20.4671	20.6717	20.7927	20.8215	20.8205	fLA = 20.7695	Living area 20.5222	/ (4) = 20.0918	0.8458 19.7081
mperature adj justed MIT	ustment 19.7307	19.9378	20.1859	20.4671	20.6717	20.7927	20.8215	20.8205	20.7695	20.5222	20.0918	0.0000 19.7081
Space heatin												
ilisation	Jan 0.9792	Feb 0.9613	Mar 0.9320	Apr 0.8763	May 0.7780	Jun 0.6107	Jul 0.4460	Aug 0.4660	Sep 0.6695	Oct 0.8757	Nov 0.9610	Dec 0.9831
eful gains t temp.	4.3000	223.0561 4.9000	233.1714 6.5000	224.5683 8.9000	197.2262 11.7000	147.1983 14.6000	103.9963 16.6000	108.2107 16.4000	155.9053 14.1000	192.3096 10.6000	191.1150 7.1000	185.8992 4.2000
nth fracti	408.0751 1.0000	395.7292 1.0000	358.4125 1.0000	296.0057 1.0000	228.5863 1.0000	154.5562 0.0000	105.3598 0.0000	109.9003 0.0000	167.7932 0.0000	252.8019 1.0000	333.9520 1.0000	402.3032 1.0000
ace heating k ace heating	157.8273	116.0363	93.1793	51.4349	23.3319	0.0000	0.0000	0.0000	0.0000	45.0063	102.8427	161.0046 750.6633
ace heating p	ber m2									(98)	/ (4) =	37.3464
. Space cooli	.ng require	ment										
lculated for t. temp. at loss rate	Jan 4.3000	and August Feb 4.9000	Mar 6.5000	e 10b Apr 8.9000	May 11.7000	Jun 14.6000	Jul 16.6000	Aug 16.4000	Sep 14.1000	Oct 10.6000	Nov 7.1000	Dec 4.2000
ilisation	0.0000	0.0000	0.0000	0.0000	0.0000	234.6022 0.9254	184.6868 0.9630	188.9453 0.9598	0.0000	0.0000	0.0000	0.0000
eful loss tal gains	0.0000	0.0000	0.0000	0.0000	0.0000	217.1007 319.1620	177.8471 309.4811		0.0000	0.0000	0.0000	0.0000
nth fracti ace cooling k	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	73.4842	97.9357	94.7258	0.0000	0.0000	0.0000	0.0000 266.1457
	1								fC =	cooled area	/ (4) =	
ace cooling oled fraction termittency f		le 10b) 0.0000	0.0000	0.0000	0.0000	0.2500	0.2500	0.2500	fC = 0.0000	cooled area	/ (4) = 0.0000	1.0000

Page 13 of 27

CALCULATION OF TARGET FABRIC ENERGY EFFICIENCY 09 Jan 2014

Space cooling Space cooling per m2 Energy for space heating Energy for space cooling Total Target Fabric Energy Efficiency (TFEE)

66.5364	(107)
3.3103	(108)
37.3464	(99)
3.3103	(108)
40.6567	
46.8	(109)

CALCULATION OF HEAT DEMAND 09 Jan 2014

AP 2012 WORKSHE ALCULATION OF H			Designed) an 2014	(Version	9.92, Januar								
. Overall dwell	ing dimens	ions											
								Area	Store	y height		Volume	
round floor otal floor area welling volume	. TFA = (la)+(1b)+(1c)+(1d)+(1e)	(ln)	2	0.1000		(m2) 20.1000 (: (3a	lb) x)+(3b)+(3c)+	(m) 2.7000 (: (3d)+(3e).		(m3) 54.2700 54.2700	(1b) - (4) (5)
. Ventilation r													
					main heating	s	econdary heating	0.	ther	tota	l m	3 per hour	
umber of chimne umber of open f umber of interm umber of passiv umber of fluele	lues dittent fan e vents				0	+ +	0	+ +	0 = 0 =		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0000 0.0000 0.0000 0.0000 0.0000	(6b) (7a) (7b)
filtration due	to chimno		and fana	- (60) - (60)	. (7.0) . (7.0) . (7~) -				0.0000		s per hour 0.0000	
ressure test easured/design nfiltration rat umber of sides	AP50 e	ys, iiues .	anu tans	- (62)+(60)	τ(/a)τ(/b)τ((10) -				0.0000	/ (3) =	Yes 3.0000 0.1500	
helter factor nfiltration rat	e adjusted	to includ	e shelter :	Eactor				(:	20) = 1 - (21	[0.075 x .) = (18) x		0.7750 0.1163	
ind speed ind factor	Jan 4.2000 1.0500	Feb 4.0000 1.0000	Mar 4.0000 1.0000	Apr 3.7000 0.9250	May 3.7000 0.9250	Jun 3.3000 0.8250	Jul 3.4000 0.8500	Aug 3.2000 0.8000	Sep 3.3000 0.8250	Oct 3.5000 0.8750	Nov 3.5000 0.8750	Dec 3.8000 0.9500	
lj infilt rate Balanced mechan	0.1221	0.1163	0.1163	0.1075	0.1075	0.0959	0.0988	0.0930	0.0959	0.1017	0.1017	0.1104	(22b)
E mechanical ve E balanced with	ntilation:			-	or in-use fa	ctor (from	m Table 4h)	=				0.5000 76.5000	
ffective ac	0.2396	0.2338	0.2338	0.2250	0.2250	0.2134	0.2163	0.2105	0.2134	0.2192	0.2192	0.2279	(25)
. Heat losses a lement				Gross	Openings	Net	tArea	U-value	АхU	K-	value	АхК	
pening Type 1 (kternal Wall 1 kternal Roof 1				m2 10.8800 8.5000	m2 3.6000	7	m2 .6000 .2800 .5000	W/m2K 1.1450 0.1600 0.1100	W/F 4.1221 1.1648 0.9350	190	J/m2K .0000 .0000	kJ/K 1383.2000 76.5000	(27) (29a) (30)
otal net area o abric heat loss arty Wall 1 arty Floor 1 nternal Wall 1			Aum(A, m2)			48 20	.3800 (26)(3 .6400 .1000 .6000	30) + (32) = 0.0000	6.2219	140 40	.0000 .0000 .0000	6809.6000 804.0000 194.4000	(32d)
eat capacity Cm nermal mass par nermal bridges	ameter (TM	P = Cm / T						(28)	.(30) + (32)	+ (32a)	.(32e) =	9267.7000 461.0796 8.8280	(34) (35)
otal fabric hea		or, caroar	acca acting	nppenarn n,						(33)	+ (36) =	15.0499	
entilation heat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
88)m eat transfer co	4.2903 eff 19.3403	4.1863	4.1863 19.2362	4.0301	4.0301	3.8219 18.8719	3.8740 18.9239	3.7699 18.8198	3.8219 18.8719	3.9260 18.9759	3.9260 18.9759	4.0822	
/erage = Sum(39		19.2302	19.2302	19.0800	19.0800	10.0/13	10.9239	10.0198	10.0/13	10.3/33	T0.3/23	19.1321 19.0453	
.P .P (average) ays in month	Jan 0.9622	Feb 0.9570	Mar 0.9570	Apr 0.9493	May 0.9493	Jun 0.9389	Jul 0.9415	Aug 0.9363	Sep 0.9389	Oct 0.9441	Nov 0.9441	Dec 0.9518 0.9475	
	31	28	31	30	31	30	31	31	30	31	30	31	(41)
Water heating	energy re	quirements	(kWh/year)										
sumed occupanc rerage daily ho	У											1.0315 58.6985	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	use 64.5683 95.7529	62.2204 83.7461	59.8724 86.4185	57.5245 75.3417	55.1765 72.2922	52.8286 62.3827	52.8286 57.8067	55.1765 66.3340	57.5245 67.1263	59.8724 78.2292	62.2204 85.3933	64.5683 92.7316	

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r17

CALCULATION OF HEAT DEMAND 09 Jan 2014

	14.3629	12,5619	12.9628	11.3013	10.8438	9.3574	8.6710	9,9501	10.0689	11.7344	10 0000	12 0007	(4.6)
Mark		12.3019	12.9628	11.3013	10.8438	9.3574	8.6/10	9.9501	10.0689	11./344	12.8090	13.9097	(46)
Water storage	loss:												
Store volume												1.0000	
a) If manufa			actor is kno	wn (kWh/da	ıy):							0.0600	
Temperature	factor from	n Table 2b										1.0000	(49)
Enter (49) or	(54) in (55	5)										0.0600	(55)
Total storage	loss												
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(56)
If cylinder c	ontains dedi	icated solar	storage										
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re	quired for w	water heatin	ng calculate	d for each	month								
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
-								Solar inpu	t (sum of :	months) = Si	um (63) m =	0.0000	(63)
Output from w	/h									,			(/
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	(64)
										h/year) = Si		1219.3512	
RHI water hea	ting demand							F-	- 1 (1219	
Heat gains fr		ation latita / a										1215	(04)
neat gains if				44 5007	44 1051	40 1010	20 2100	40 1540	41 7 601	46 1001	47 0400	50 0010	((5))
	51.9358	45.9985	48.8321	44.5007	44.1351	40.1918	39.3186	42.1540	41.7691	46.1091	47.8429	50.9312	(62)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908 ((66)
Lighting gains	(calculated	l in Appendi	x L, equation	on L9 or L	9a), also se	ee Table 5							
	17.2959	15.3621	12.4933	9.4582	7.0701	5.9689	6.4496	8.3835	11.2523	14.2873	16.6754	17.7767 ((67)
Appliances gair	ns (calculat	ed in Appen	dix L, equa	tion L13 o	r L13a), als	so see Tabl	e 5						
	113.3129	114.4887	111.5257	105.2177	97.2549	89.7711	84.7714	83.5956	86.5587	92.8667	100.8294	108.3132 ((68)
Cooking gains ((calculated	in Appendix	L, equation	n L15 or L	15a), also s	see Table 5							
	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206 ((69)
Pumps, fans	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ((70)
Losses e.g. eva	aporation (n	egative val	ues) (Table	5)									
	-41.2605	-41.2605	-41.2605 .	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605 ((71)
Water heating g	gains (Table	5)											
	69.8061	68.4502	65.6345	61.8066	59.3213	55.8220	52.8476	56.6586	58.0126	61.9746	66.4484	68.4559 ((72)
Total internal	gains												
	263.2659	261.1519	252.5044	239.3333	226.4973	214.4129	206.9196	211.4885	218.6744	231.9795	246.8041	257.3966 ((73)

6 Solar maine

o. ootat gatao	

[Jan]			A	m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce fact Table	or	Gains W	
South			3.6	000	50.9848		0.3600	0	.7000	0.77	00	32.0536	(78)
Solar gains Total gains	32.0536 295.3195	47.1116 308.2635	59.1840 311.6884	69.1730 308.5063	70.7100 297.2072	73.1233 287.5362	70.5427 277.4623	69.6000 281.0885	67.0570 285.7315	54.2001 286.1796	38.8916 285.6958	27.4538 284.8504	

7. Mean internal temperature (heating season)

 Temperature during heating periods in the living area from Table 9, Th1 (C)

 Utilisation factor for gains for living area, nil,m (see Table 9a)

 Jan
 Feb
 Mar
 Apr
 May
 Jun
 Jul
 Aug
 Sep
 Oct
 Nov

 tau
 133.1087
 133.8291
 133.8291
 134.9243
 136.4127
 136.0376
 136.7900
 136.4127
 135.6644
 135.6644

 alpha
 9.8739
 9.9219
 9.9950
 9.9950
 10.0942
 10.0692
 10.1193
 10.0942
 10.0443

 util living area
 0.9253
 0.8893
 0.8115
 0.6814
 0.5133
 0.3282
 0.2114
 0.2143
 0.3831
 0.6212
 0.8298

MIT	20.9020	20.9368	20.9752	20.9955	20.9997	21.0000	21.0000	21.0000	21.0000	20.9983	20.9725	20.8921 (87)
Th 2	20.1149	20.1193	20.1193	20.1258	20.1258	20.1346	20.1324	20.1367	20.1346	20.1302	20.1302	20.1237 (88)
util rest of	house											
	0.9002	0.8575	0.7685	0.6300	0.4574	0.2714	0.1523	0.1565	0.3259	0.5648	0.7860	0.9129 (89)
MIT 2	20.0447	20.0765	20.1046	20.1237	20.1257	20.1346	20.1324	20.1367	20.1346	20.1295	20.1141	20.0452 (90)
Living area :	fraction								fLA =	Living area	/ (4) =	0.8458 (91)
MIT	20.7698	20.8041	20.8409	20.8610	20.8649	20.8665	20.8662	20.8669	20.8665	20.8643	20.8401	20.7615 (92)
Temperature a	adjustment											0.3000
adjusted MIT	21.0698	21.1041	21.1409	21.1610	21.1649	21.1665	21.1662	21.1669	21.1665	21.1643	21.1401	21.0615 (93)

8. Space heating requirement

Utilisation	Jan 0.9270	Feb 0.8927	Mar 0.8180	Apr 0.6907	May 0.5238	Jun 0.3391	Jul 0.2228	Aug 0.2254	Sep 0.3941	Oct 0.6318	Nov 0.8364	Dec 0.9371	(94)
Useful gains	273.7654	275.1878	254.9460	213.0734	155.6708	97.5007	61.8090	63.3637	112.5935	180.8029	238.9451	266.9306	(95)
Ext temp.	5.1000	5.6000	7.4000	9.9000	13.0000	16.0000	17.9000	17.8000	15.2000	11.6000	8.0000	5.1000	(96)
Heat loss rate	e W												
	308.8602	298.2396	264.3227	214.8612	155.7873	97.5018	61.8090	63.3637	112.5992	181.4922	249.3453	305.3769	(97)
Month fracti	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	(97a)
Space heating	kWh												
	26.1105	15.4908	6.9762	1.2872	0.0867	0.0000	0.0000	0.0000	0.0000	0.5128	7.4881	28.6041	(98)
Space heating RHI space heat	ting demand											86.5565 87	(98) (98)

21.0000 (85)

Dec 134.5572 9.9705 0.9357 (86)

CALCULATION OF HEAT DEMAND 09 Jan 2014

(3b)

CALCULATION OF ENERGY RATINGS 09 Jan 2014

SAP 2012 WORKSHE CALCULATION OF E			Designed) 9 Jan 2014	(Version	9.92, Januar	y 2014)							
1. Overall dwell	ling dimens	ions											
								Area	Store	y height		Volume	
Ground floor Fotal floor area Dwelling volume	a TFA = (la)+(1b)+(1c)+(1d)+(1e)(ln)	2	0.1000		(m2) 20.1000 (3	(1b) x a)+(3b)+(3c)+	(m) 2.7000 ((3d)+(3e).		(m3) 54.2700 54.2700	(4)
2. Ventilation 1	rate												
					main heating	s	econdary heating		other	tota	.l m	3 per hour	
Number of chimne Number of open f Number of interr Number of passiv Number of fluele	flues mittent far ve vents				Ō	+ +	ō O	+ +	0 = 0 =		0 * 40 = 0 * 20 = 0 * 10 = 0 * 10 = 0 * 40 =	0.0000 0.0000 0.0000 0.0000 0.0000	(6b) (7a) (7b)
Infiltration due Pressure test Measured/design Infiltration rat Number of sides	AP50 te	ys, flues a	and fans	= (6a)+(6b)	+(7a)+(7b)+(7c) =					Air change / (5) =	s per hour 0.0000 Yes 3.0000 0.1500 3	(8)
Shelter factor Infiltration rat	te adjusted	to include	e shelter	factor					(20) = 1 - (21	[0.075 x) = (18) x		0.7750 0.1163	
Wind speed Wind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
dj infilt rate	0.1482	0.1453	0.1424	0.1279	0.1250	0.1104	0.1104	0.1075	0.1163	0.1250	0.1308	0.1366	
Balanced mechan If mechanical ve If balanced with	entilation:				or in-use fa	ctor (from	m Table 4h)	=				0.5000 76.5000	(23a)
Effective ac	0.2657	0.2628	0.2599	0.2454	0.2425	0.2279	0.2279	0.2250	0.2338	0.2425	0.2483	0.2541	(25)
3. Heat losses a													
Element				Gross	Openings		tArea	U-value	AxU		value	AxK	
Opening Type 1 External Wall 1 External Roof 1	(Uw = 1.20)			m2 10.8800 8.5000	m2 3.6000	7	m2 .6000 .2800 .5000	W/m2K 1.1450 0.1600 0.1100	W/K 4.1221 1.1648 0.9350	190	.0000 .0000	kJ/K 1383.2000 76.5000	(27) (29a)
Fotal net area of Fabric heat loss Party Wall 1 Party Floor 1 Internal Wall 1			Aum(A, m2)			48 20	.3800 (26)(3 .6400 .1000 .6000	30) + (32) 0.0000	= 6.2219 0.0000	140 40	.0000 .0000 .0000	6809.6000 804.0000 194.4000	(32d)
Heat capacity Cr Thermal mass pai	rameter (TM	IP = Cm / TI						(28).	(30) + (32)			9267.7000 461.0796	(34) (35)
Thermal bridges Total fabric hea		'sı) calcula	ated using	Appendix K)						(33)	+ (36) =	8.8280 15.0499	
Ventilation heat	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m Heat transfer co Average = Sum(39	19.8087	4.7067 19.7567	4.6547 19.7046	4.3944 19.4444	4.3424 19.3923	4.0822 19.1321	4.0822 19.1321	4.0301 19.0800	4.1863 19.2362	4.3424 19.3923	4.4465 19.4964	4.5506 19.6005 19.4314	(39)
HLP HLP (average)	Jan 0.9855	Feb 0.9829	Mar 0.9803	Apr 0.9674	May 0.9648	Jun 0.9518	Jul 0.9518	Aug 0.9493	Sep 0.9570	Oct 0.9648	Nov 0.9700	Dec 0.9752 0.9667	
Days in month	31	28	31	30	31	30	31	31	30	31	30	31	(41)
4. Water heating													
Assumed occupant Assumed occupant	 су											1.0315 58.6985	
aarry m	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(
Daily hot water		62.2204	59.8724	57.5245	55.1765	52.8286	52.8286	55.1765	57.5245	59.8724	62.2204	64.5683	(44)

Regs Region: England Elmhurst Energy Systems SAP2012 Calculator (Design System) version 4.14r17

CALCULATION	OF ENERGY RATINGS	09 Jan 2014
CALCOLATION		

	14.3629	12.5619	12.9628	11.3013	10.8438	9.3574	8.6710	9.9501	10.0689	11.7344	12.8090	13.9097	(46)
Water storage	loss:												
Store volume												1.0000	(47)
a) If manufa	cturer decl	ared loss f	actor is kno	wn (kWh/da	ay):							0.0600	(48)
Temperature	factor fro	m Table 2b										1.0000	(49)
Enter (49) or	(54) in (5	5)										0.0600	(55)
Total storage	loss												
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(56)
If cylinder c													
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(57)
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat re													
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	(62)
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63)
								Solar inpu	t (sum of :	months) = Si	um(63)m =	0.0000	(63)
Output from w	/h												
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	
								Total pe	r year (kW	h/year) = Si	um(64)m =	1219.3512	(64)
Heat gains fr	om water he	ating, kWh/	month										
	51.9358	45.9985	48.8321	44.5007	44.1351	40.1918	39.3186	42.1540	41.7691	46.1091	47.8429	50.9312	(65)

5. Internal gains (see Table 5 and 5a)

Metabolic gair	ns (Table 5)	, Watts											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908	61.8908 (66	5)
Lighting gains	(calculate	d in Append	dix L, equat	ion L9 or 1	L9a), also :	see Table 5							
	17.2959	15.3621	12.4933	9.4582	7.0701	5.9689	6.4496	8.3835	11.2523	14.2873	16.6754	17.7767 (67	7)
Appliances gai	ns (calcula	ited in Appe	endix L, equ	ation L13 d	or L13a), a	lso see Tab	le 5						
	113.3129	114.4887	111.5257	105.2177	97.2549	89.7711	84.7714	83.5956	86.5587	92.8667	100.8294	108.3132 (68	3)
Cooking gains	(calculated	l in Appendi	ix L, equati	ion L15 or 1	L15a), also	see Table 3	5						
	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206	42.2206 (69	9)
Pumps, fans	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 (70))
Losses e.g. ev	aporation (negative va	alues) (Tabl	Le 5)									
	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605	-41.2605 (71	1)
Water heating	gains (Tabl	.e 5)											
	69.8061	68.4502	65.6345	61.8066	59.3213	55.8220	52.8476	56.6586	58.0126	61.9746	66.4484	68.4559 (72	2)
Total internal	. gains												
	263.2659	261.1519	252.5044	239.3333	226.4973	214.4129	206.9196	211.4885	218.6744	231.9795	246.8041	257.3966 (73	3)

6. Solar	gains			

[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce: facto Table	or	Gains W	
South			3.60	00	46.7521		0.3600	0	.7000	0.77	00	29.3925	(78)
Solar gains Total gains	29.3925 292.6584	48.1374 309.2893	61.3185 313.8229	69.3032 308.6366	72.2183 298.7155	69.5002 283.9131	67.9060 274.8255	65.9461 277.4346	64.0544 282.7288	51.9207 283.9002	34.8402 281.6443	25.3979 282.7945	

Temperature d Utilisation f						Thl (C)						21.0000
0011100001011 1	Jan	Feb	Mar Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
au	129.9610	130.3034	130.6476	132.3961	132.7515	134.5572	134.5572	134.9243	133.8291	132.7515	132.0427	131.3414
lpha	9.6641	9.6869	9.7098	9.8264	9.8501	9.9705	9.9705	9.9950	9.9219	9.8501	9.8028	9.7561
til living a	rea											
	0.9516	0.9186	0.8587	0.7490	0.6021	0.4312	0.3063	0.3164	0.4693	0.7031	0.8890	0.9603
IT	20.8507	20.9031	20.9537	20.9883	20.9986	21.0000	21.0000	21.0000	20.9999	20.9941	20.9411	20.8351
h 2	20.0954	20.0976	20.0998	20.1106	20.1128	20.1237	20.1237	20.1258	20.1193	20.1128	20.1084	20.1041
til rest of	house											
	0.9335	0.8924	0.8209	0.6993	0.5455	0.3722	0.2453	0.2562	0.4095	0.6465	0.8532	0.9447
IT 2	19.9822	20.0284	20.0702	20.1045	20.1122	20.1236	20.1237	20.1258	20.1193	20.1101	20.0703	19.9768
iving area f										Living area		0.8458
IT	20.7168	20.7682	20.8174	20.8520	20.8619	20.8648	20.8648	20.8652	20.8641	20.8578	20.8068	20.7027
emperature a												0.3000
djusted MIT	21.0168	21.0682	21.1174	21.1520	21.1619	21.1648	21.1648	21.1652	21.1641	21.1578	21.1068	21.0027
. Space heat												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tilisation	0.9519	0.9204	0.8632	0.7572	0.6123	0.4423	0.3178	0.3277	0.4804	0.7129	0.8928	0.9603
seful gains	278.5809	284.6556	270.8987	233.6887	182.9026	125.5778	87.3343	90.9189	135.8367	202.3906	251.4526	271.5780
xt temp.	4.3000	4.9000	6.5000	8.9000	11.7000	14.6000	16.6000	16.4000	14.1000	10.6000	7.1000	4.2000
eat loss rat												
	331.1381	319.4290	288.0304	238.2318	183.4878	125.5984	87.3350	90.9198	135.8858	204.7397	273.0820	329.3424
onth fracti	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000	1.0000

 Month Hatin
 Hotob
 Hotob</thotob</th>
 Hotob
 Hotob</thotob</th>
 <thH

CALCULATION OF ENERGY RATINGS 09 Jan 2014

8c. Space cooling requirement

Not applicable

9b. Energy requirements							
Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s)						0.0000 1.0000	
Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement						100.0000 0.0000 139.2202	(206) (208)
Jan Feb Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 39.1025 23.3677 12.7460 3.2711 0.4354 0.0000	0.0000	0.0000	0.0000	1.7477	15.5731	42.9767	(98)
Space heating efficiency (main heating system 1) 100.0000 100.0000 100.0000 100.0000 100.0000 0.0000	0.0000	0.0000	0.0000	100.0000	100.0000		
Space heating fuel (main heating system) 39.1025 23.3677 12.7460 3.2711 0.4354 0.0000	0.0000	0.0000	0.0000	1.7477	15.5731		
Water heating requirement 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Water heating Annual water heating requirement						1219.3512	
Fraction of heat from community Heat pump Factor for control and charging method (Table 4c(3)) for community water heating						1.0000 1.0500	(305a)
Distribution loss factor (Table 12c) for community heating system Water heat from Heat pump = $(64) \times 1.00 \times 1.05 \times 1.20$						1.2000 1536.3825	(310a)
Electricity used for heat distribution Annual totals kWh/year						15.3638	
Space heating fuel - main system Space heating fuel - secondary						139.2202 0.0000	
Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.7875)							
mechanical ventilation fans (SFP = 0.7875) Total electricity for the above, KWh/year						52.1399 52.1399	
Electricity for lighting (calculated in Appendix L)						122.1807	
Energy saving/generation technologies (Appendices M ,N and Q) PV Unit 0 (0.80 \star 0.25 \star 951 \star 0.80) =				-152.0986		-152.0986	(233)
Total delivered energy for all uses				102.0000		1697.8248	
10a. Fuel costs - using Table 12 prices							
		 Fuel		Fuel price		Fuel cost	
Space heating - main system 1		kWh/year 139.2202		p/kWh 13.1900		£/year 18.3631	
Space heating - secondary Water heating from Heat pump		0.0000		0.0000 4.2400		0.0000 65.1426	(242)
Mechanical ventilation fans Pumps and fans for heating		52.1399 0.0000		13.1900		6.8773	(249)
Energy for lighting Additional standing charges		122.1807		13.1900		16.1156	(250)
Energy saving/generation technologies						00.0000	(231)
PV Unit Total energy cost		-152.0986		13.1900		-20.0618 146.4369	
Total chergy cost						140.4505	(200)
lla. SAP rating - Individual heating systems							
Energy cost deflator (Table 12):						0.4200	(256)
Energy cost factor (ECF) SAP value		[(255) x (256)] / [(4) +	45.0] =	0.9448 86.8207	
SAP rating (Section 12) SAP band						87 B	(258)
12a. Carbon dioxide emissions							
		Energy kWh/year		ion factor kg CO2/kWh		Emissions kg CO2/year	
Space heating - main system 1 Efficiency of heat source Heat pump		139.2202		0.5190		72.2553 250.0000	(261)
Space heating from Heat pump Electrical energy for heat distribution		614.5530 15.3638		0.5190		318.9530 7.9738	(367)
Total CO2 associated with community systems (negative value allowed since DFEE <= TFEE)						326.9268	
Space heating - secondary Space and water heating		0.0000		0.0000		0.0000 399.1821	
Pumps and fans Energy for lighting		52.1399 122.1807		0.5190		27.0606	(267)
Energy soving/generation technologies		122.100/		0.0190		00.4110	(200)
PV Unit		-152.0986		0.5190		-78.9392	
Total kg/year CO2 emissions per m2						410.7154 20.4300	(273)
EI value EI rating							(274)
EI band						A	

CALCULATION OF ENERGY RATINGS 09 Jan 2014

 Calculation of stars for heating and DHW

 Main heating energy efficiency

 Main heating energy efficiency

 13.19 × (1 + 0.29 × 0.00) / 1.0000 = 13.190, stars = 1

 0.519 × (1 + 0.29 × 0.00) / 1.0000 = 0.5190, stars = 2

 Water heating energy efficiency

 1.00 × 4.240 × 1.20

 2 5.088, stars = 4

 Water heating environmental impact

 1.00 × 0.519 × 1.20 / 2.5000

CALCULATION OF EPC COSTS, EMISSIONS AND PRIMARY ENERGY 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF EPC COSTS, EMISSIONS AND PRIMARY ENERGY 09 Jan 2014

1. Overall dwelling dimensions						
Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume	20.1000	Area (m2) 20.1000 (1b) (3a)+(3h	Storey heig: (1 x 2.70 (1)+(3c)+(3d)+(n))0 (2b)	= 5	Volume (m3) 44.2700 (lb) - (3b) (4) 44.2700 (5)

2. Ventilation	rate												
					main heating		secondary heating		other	tota	al m3	8 per hour	
Number of chimn	neys				õ	+	õ	+	0 =		0 * 40 =	0.0000	(ба)
Number of open					0	+	0	+	0 =		0 * 20 =	0.0000	
Number of inter		ns									0 * 10 =	0.0000	
Number of passi											0 * 10 =	0.0000	
Number of fluel	.ess gas fi	res									0 * 40 =	0.0000	(7c)
											Air changes		
Infiltration du Pressure test	e to chimn	eys, flues a	and fans	= (6a)+(6b)·	+(7a)+(7b)+	(7c) =				0.0000	/ (5) =	0.0000 Yes	(8)
Measured/design	AP50											3.0000	
Infiltration ra	ite											0.1500	(18)
Number of sides	s sheltered											3	(19)
Shelter factor									(20) = 1 -	[0.075 x	(19)] =	0.7750	(20)
Infiltration ra	ate adjuste	d to include	e shelter f	actor					(2)	1) = (18) :	x (20) =	0.1163	(21)
wheel and and	Jan 4.2000	Feb 4.0000	Mar 4.0000	Apr 3.7000	May 3.7000	Jun 3.3000	Jul 3.4000	Aug 3.2000	Sep 3.3000	Oct 3.5000	Nov 3.5000	Dec	(22)
Wind speed Wind factor	4.2000	4.0000	4.0000	0.9250	0.9250	0.8250		0.8000	0.8250	0.8750	0.8750	3.8000 0.9500	
Adj infilt rate		1.0000	1.0000	0.9230	0.9230	0.0230	0.0500	0.0000	0.0230	0.0750	0.0750	0.9500	(22a)
Raj initite tace	0.1221	0.1163	0.1163	0.1075	0.1075	0.0959	0.0988	0.0930	0.0959	0.1017	0.1017	0.1104	(22b)
Balanced mecha	nical vent	ilation with	h heat reco	very									
If mechanical v	ventilation	:		-								0.5000	(23a)
If balanced wit	h heat rec	overy: effi	ciency in %	allowing fo	or in-use fa	actor (fr	om Table 4h)	=				76.5000	(23c)
Effective ac	0.2396	0.2338	0.2338	0.2250	0.2250	0.2134	0.2163	0.2105	0.2134	0.2192	0.2192	0.2279	(25)

Element				Gross	Openings	Net	Area	U-value	A x U	K-	value	A x K	
				m2	m2		m2	W/m2K	W/K	k	J/m2K	kJ/K	
Opening Type 1	(Uw = 1.20)				3.	6000	1.1450	4.1221				(27)
External Wall 1	1			10.8800	3.6000	7.	2800	0.1600	1.1648	190	.0000	1383.2000	(29a
External Roof 1	1			8.5000			5000	0.1100	0.9350	9	0000	76.5000	(30)
Total net area	of externa	l elements	Aum(A, m2)			19.	.3800						(31)
Fabric heat los	ss, W/K = S	um (A x U)					(26)(30) + (32) =	6.2219				(33)
Party Wall 1						48.	6400	0.0000	0.000	140	.0000	6809.6000	(32)
Party Floor 1							.1000			40	.0000	804.0000	(32d
Internal Wall 1	1					21.	.6000			9	0000	194.4000	(32c
Heat capacity (Cm = Sum(A	x k)						(28)	. (30) + (32)	+ (32a)	.(32e) =	9267.7000	(34)
Thermal mass pa	arameter (T	MP = Cm / 7	FA) in kJ/m	2K								461.0796	(35)
Thermal bridges	s (Sum(L x	Psi) calcul	ated using	Appendix K)								8.8280	(36)
Total fabric he	eat loss									(33)	+ (36) =	15.0499	(37)
Ventilation hea	at loss cal	culated mor	thly (38)m	= 0.33 x (2	5)m x (5)								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m Heat transfer o	4.2903	4.1863	4.1863	4.0301	4.0301	3.8219	3.8740	3.7699	3.8219	3.9260	3.9260	4.0822	(38)
neat transfer t	19.3403	19.2362	19.2362	19.0800	19.0800	18.8719	18,9239	18.8198	18.8719	18.9759	18.9759	19.1321	(20)
Average = Sum(3		19.2302	19.2302	19.0000	19.0000	10.0/19	10.9239	10.0190	10.0/19	10.9/39	10.9739	19.0453	
Average - Sum(s	55)111 / 12 =											19.0455	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP	0.9622	0.9570	0.9570	0.9493	0.9493	0.9389	0.9415	0.9363	0.9389	0.9441	0.9441	0.9518	(40)
HLP (average)												0.9475	(40)
Days in month													
	31	28	31	30	31	30	31	31	30	31	30		(41)

4. Water heating energy requirements (kWh/year) Assumed occupancy 1.0315 (42) 58.6985 (43) Average daily hot water use (litres/day) Feb Mar Jan Apr May Jun Jul Aug Sep Oct Nov Dec
 Jan
 Feb
 Mar

 Daily hot water use
 64.5683
 62.2204
 59.8724

 Energy conte
 95.7529
 83.7461
 86.4185

 Energy content (annual)
 Distribution loss
 (46)m = 0.15 x (45)m
 59.8724 62.2204 78.2292 85.3933 Total = Sum(45)m = 64.5683 (44) 92.7316 (45) 923.5552 (45) 57.5245 75.3417 55.1765 52.8286 72.2922 62.3827 52.8286 57.8067 55.1765 57.5245 66.3340 67.1263

CALCULATION OF EPC COSTS, EMISSIONS AND PRIMARY ENERGY 09 Jan 2014

	14.3629	12.5619	12.9628	11.3013	10.8438	9.3574	8.6710	9.9501	10.0689	11.7344	12.8090	13.9097	(46)
Water storage l	oss:												
Store volume												1.0000	(47)
a) If manufact			actor is kno	wn (kWh/da	ıy):							0.0600	
Temperature f												1.0000	
Enter (49) or ((54) in (5	5)										0.0600	(55)
Total storage l													
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	(56)
If cylinder cor													
	1.8600	1.6800	1.8600	1.8000	1.8600	1.8000	1.8600	1.8600	1.8000	1.8600	1.8000	1.8600	
Primary loss	23.2624	21.0112	23.2624	22.5120	23.2624	22.5120	23.2624	23.2624	22.5120	23.2624	22.5120	23.2624	(59)
Total heat requ													
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	
Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								Solar input	t (sum of	months) = S	um(63)m =	0.0000	(63)
Output from w/h													
	120.8753	106.4373	111.5409	99.6537	97.4146	86.6947	82.9291	91.4564	91.4383	103.3516	109.7053	117.8540	
								Total per	r year (kW	h/year) = S	um(64)m =	1219.3512	(64)
Heat gains from		2.						10 1510					1053
	51.9358	45.9985	48.8321	44.5007	44.1351	40.1918	39.3186	42.1540	41.7691	46.1091	47.8429	50.9312	(65)

5. Internal gains (see Table 5 and 5a)

Metabolic gains (Table 5), Watts
 MetaDolic gains (Table 5), Watts
 Mar
 Apr
 May
 Jun
 Jun

 (66)m
 61.8908
 61.8908
 61.8908
 61.8908
 61.8908
 61.8908
 61

 Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5
 7.0701
 5.9689
 61

 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
 113.3129
 114.4887
 111.5257
 105.2177
 97.2549
 89.7711
 84

 Cooking gains (calculated in Appendix L, equation L13 or L13a), also see Table 5
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206
 42.2206</td Jul Aug Sep 61.8908 Oct 61.8908 Nov 61.8908 Dec 61.8908 (66) 61.8908 61.8908 6.4496 8.3835 11.2523 14.2873 16.6754 17.7767 (67) 84.7714 83.5956 86.5587 92.8667 100.8294 108.3132 (68) 42.2206 42.2206 42.2206 0.0000 0.0000 42.2206 0.0000 42.2206 42.2206 (69) 0.0000 (70) 0.0000 0.0000 -41.2605 -41 -41.2605 -41.2605 -41.2605 -41.2605 -41.2605 (71) 56.6586 58.0126 61.9746 66.4484 68.4559 (72) Total internal gains 263.2659 261.1519 252.5044 239.3333 226.4973 214.4129 206.9196 211.4885 218.6744 231.9795 246.8041 257.3966 (73)

6. Solar gains	

[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci	g fic data Table 6b	Specific or Tab		Acce: facto Table	or	Gains W	
South			3.60	000	50.9848		0.3600	0	.7000	0.77	00	32.0536	(78)
Solar gains Total gains	32.0536 295.3195	47.1116 308.2635	59.1840 311.6884	69.1730 308.5063	70.7100	73.1233 287.5362	70.5427	69.6000 281.0885	67.0570 285.7315	54.2001 286.1796	38.8916 285.6958	27.4538 284.8504	

7. Mean inter	nal tempera	ture (heati	ng season)									
Temperature d Utilisation f	uring heati	ng periods	in the livi	ng area fro	n Table 9, '							21.0000 (85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau	133.1087	133.8291	133.8291	134.9243	134.9243	136.4127	136.0376	136.7900	136.4127	135.6644	135.6644	134.5572
alpha	9.8739	9.9219	9.9219	9.9950	9.9950	10.0942	10.0692	10.1193	10.0942	10.0443	10.0443	9.9705
util living a												
	0.9253	0.8893	0.8115	0.6814	0.5133	0.3282	0.2114	0.2143	0.3831	0.6212	0.8298	0.9357 (86)
MIT	20.9020	20.9368	20.9752	20.9955	20.9997	21.0000	21.0000	21.0000	21.0000	20.9983	20.9725	20.8921 (87)
Th 2	20.1149	20.1193	20.1193	20.1258	20.1258	20.1346	20.1324	20.1367	20.1346	20.1302	20.1302	20.1237 (88)
util rest of												
	0.9002	0.8575	0.7685	0.6300	0.4574	0.2714	0.1523	0.1565	0.3259	0.5648	0.7860	0.9129 (89)
MIT 2	20.0447	20.0765	20.1046	20.1237	20.1257	20.1346	20.1324	20.1367	20.1346	20.1295	20.1141	20.0452 (90)
Living area f										Living area		0.8458 (91)
TIN	20.7698	20.8041	20.8409	20.8610	20.8649	20.8665	20.8662	20.8669	20.8665	20.8643	20.8401	20.7615 (92)
Temperature a												0.3000
adjusted MIT	21.0698	21.1041	21.1409	21.1610	21.1649	21.1665	21.1662	21.1669	21.1665	21.1643	21.1401	21.0615 (93)
8. Space heat												
	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisation	0.9270	0.8927	0.8180	0.6907	0.5238	0.3391	0.2228	0.2254	0.3941	0.6318	0.8364	0.9371 (94)
Useful gains	273.7654	275.1878	254.9460	213.0734	155.6708	97.5007	61.8090	63.3637	112.5935	180.8029	238.9451	266.9306 (95)
Ext temp.	5.1000	5.6000	7.4000	9.9000	13.0000	16.0000	17.9000	17.8000	15.2000	11.6000	8.0000	5.1000 (96)
Heat loss rat	e W											
	308.8602	298.2396	264.3227	214.8612	155.7873	97.5018	61.8090	63.3637	112.5992	181.4922	249.3453	305.3769 (97)
Aonth fracti	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	1.0000 (97a
Space heating	kWh											
	26.1105	15.4908	6.9762	1.2872	0.0867	0.0000	0.0000	0.0000	0.0000	0.5128	7.4881	28.6041 (98)

Space heating Space heating per m2 (98) / (4) =

86.5565 (98) 4.3063 (99)

CALCULATION OF EPC COSTS, EMISSIONS AND PRIMARY ENERGY 09 Jan 2014

8c. Space cooling requirement Not applicable

9b. Energy requirements							
Fraction of space heat from secondary/supplementary system (Table 11) Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of secondary/supplementary heating system, % Space heating requirement						0.0000 1.0000 100.0000 0.0000 86.5565	(202) (206) (208)
Jan Feb Mar Apr May Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 26.1105 15.4908 6.9762 1.2872 0.0867 0.0000	0.0000	0.0000	0.0000	0.5128	7.4881	28.6041	(98)
Space heating efficiency (main heating system 1) 100.0000 100.0000 100.0000 100.0000 100.0000 0.0000	0.0000	0.0000	0.0000	100.0000	100.0000	100.0000	(210)
Space heating fuel (main heating system) 26.1105 15.4908 6.9762 1.2872 0.0867 0.0000	0.0000	0.0000	0.0000	0.5128	7.4881	28.6041	(211)
Water heating requirement 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Annual water heating requirement Fraction of heat from community Heat pump Factor for control and charging method (Table 4c(3)) for community water heating Distribution loss factor (Table 12c) for community heating system Water heat from Heat pump = (64) x 1.00 x 1.05 x 1.20 Electricity used for heat distribution Annual totals kWh/year						1219.3512 1.0000 1.0500 1.2000 1536.3825 15.3638	(303a) (305a) (306) (310a)
Space heating fuel - main system Space heating fuel - secondary						86.5565 0.0000	
Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.7875) mechanical ventilation fans (SFP = 0.7875) Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)						52.1399 52.1399 122.1807	(231)
Energy saving/generation technologies (Appendices M ,N and Q) PV Unit 0 (0.80 \star 0.25 \star 1019 \star 0.80) = Total delivered energy for all uses			-162.9850		-162.9850 1634.2747		
10a. Fuel costs - using BEDF prices (485)							
· · · · · · · · · · · · · · · · · · ·		Fuel		Fuel price		Fuel cost	
Space heating - main system 1 Space heating - secondary Water heating from Heat pump Mechanical ventilation fans Pumps and fans for heating Energy for lighting Additional standing charges		kWh/year 86.5565 0.0000 1536.3825 52.1399 0.0000 122.1807		p/kWh 19.1200 0.0000 4.5600 19.1200 0.0000 19.1200		£/year 16.5496 0.0000 70.0590 9.9691 0.0000 23.3610 47.0000	(240) (242) (342a) (249) (249) (250)
Energy saving/generation technologies PV Unit Total energy cost		-162.9850		19.1200		-31.1627 135.7760	
-22. Carbon dioxide emissions							
		Energy		ion factor		Emissions	
Space heating - main system 1		kWh/year 86.5565		kg CO2/kWh 0.5190	k	g CO2/year 44.9228	(261)
Efficiency of heat source Heat pump Space heating from Heat pump Electrical energy for heat distribution Total CO2 associated with community systems		614.5530 15.3638		0.5190 0.5190		250.0000 318.9530 7.9738 326.9268	(367) (372)
(negative value allowed since DFEE <= TFEE) Space heating - secondary		0.0000		0.0000		0.0000	
Space and water heating Pumps and fans Energy for lighting		52.1399 122.1807		0.5190 0.5190		371.8497 27.0606 63.4118	(267)
Energy saving/generation technologies PV Unit Total kg/year		-162.9850		0.5190		-84.5892 377.7329	
13a. Primary energy							
			imarv ene	rgy factor	Prim	ary energy	
Space heating - main system 1 Efficiency of heat source Heat pump		kWh/year 86.5565		kg CO2/kWh 3.0700		kWh/year 265.7285 250.0000	(261)
Space heating from Heat pump Electrical energy for heat distribution Total CO2 associated with community systems		614.5530 15.3638		3.0700 3.0700		1886.6777 47.1669 1933.8447	(367) (372)
(negative value allowed since DFEE <= TFEE) Space heating - secondary Space and water heating		0.0000		0.0000		0.0000 2199.5732	

CALCOLATION OF L	PC COSTS, EMISSION	S AND PRIN	IARY ENERGY 0	9 Jan 2014		
Pumps and fans				52.1399	3.0700	160.0695 (267
nergy for lighting Energy saving/generation	tochnologiog			122.1807	3.0700	375.0948 (268
PV Unit Primary energy kWh/year	technologies			-162.9850	3.0700	-500.3638 (269 2234.3737 (272
rimary energy kWh/m2/year	:					111.1629 (273
SAP 2012 EPC IMPROVEMENTS						
Current energy efficiency Current environmental impa			B 87 A 92			
(For testing purposes):						
A 3			Not considere Not considere			
			Not considere Not considere	±		
Low energy lighting			Already install	ed		
- -			Not considere Not considere	±		
I C			Not considere Not considere	Ê		
J C			Not considere Not considere			
Solar water heating			Not considere Not applicable			
			Not considere			
2			Not considere Not considere	±		
			Not considere Not considere			
J Solar photovoltaic pane A2	:ls		Not applicable Not considere	±		
13 12			Not considere Not considere	±		
q			Not considere	±		
ć Z			Not considere Not considere	±		
J2 22			Not considere Not considere			
21 22			Not considere Not considere			
			Not considere Not considere	Ė		
z 5			Not considere			
72 Wind turbine			Not applicable Not considere			
23 03			Not considere Not considere			
ecommended measures:	SAP chang	re Cost change	e CO2 change			
Recommended measures	Typical e	nnual savings	Energy Environme efficiency impac			
(none)	Total Savings £0	0.00 kg	r /m ²			
Potential energy efficient		0.00 Kg	в 87			
Potential environmental in	mpact rating:		A 92	21.)		
Recommendation texts revis	on this page from databas sion number 4.9c (22 Feb 2	:014)				
	ng costs of this home (pe Current	Potential	Saving			
Electricity Community scheme	£50 £117	£117	£0 £0			
Space heating Water heating	£74 £70		£0 £0			
Lighting Generated (PV)	£23 -£31	£23	£0 £0			
Total cost of fuels	£136	£136	£0			
Total cost of uses	£136	£136	£O			
Delivered energy	81 kWh/m² 0.4 tonnes	81 kWh/m² 0.4 tonnes	0 kWh/m² 0.0 tonnes			
Carbon dioxide emissions CO2 emissions per m ²	19 kg/m²	19 kg/m²	0 kg/m²			

CALCULATION OF ENERGY RATINGS FOR IMPROVED DWELLING 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF ENERGY RATINGS FOR IMPROVED DWELLING 09 Jan 2014

No improvements selected / applicable

CALCULATION OF EPC COSTS, EMISSIONS AND PRIMARY ENERGY FOR IMPROVED DWELLING 09 Jan 2014

SAP 2012 WORKSHEET FOR New Build (As Designed) (Version 9.92, January 2014) CALCULATION OF EPC COSTS, EMISSIONS AND PRIMARY ENERGY FOR IMPROVED DWELLING 09 Jan 2014

SAP 2012 OVERHEATING ASSESSMENT FOR New Build (As Designed) 9.92

Overheating Calculation Input Data	
Dwelling type	MidTerrace Flat
Number of storeys	1
Cross ventilation possible	No
SAP Region	Thames Valley
Front of dwelling faces	North
Overshading	Average or unknown
Thermal mass parameter	461.1 (calculated from construction elements)
Night ventilation	No
Ventilation rate during hot weather (ach)	4.00 (Windows fully open)

Overheating Calculation						
Summer ventilation heat loss coefficient Transmission heat loss coefficient Summer heat loss coefficient						71.64 (P1) 15.05 (37) 86.69 (P2)
Overhangs Orientation				Z_overhangs		Overhang type
South			0.000	1.000	None	2
Solar shading Orientation				Solar access	Z overhangs	Z summer
South			1.000	0.90	1.000	0.900 (P8)
[Jul]	m2	Table 6a W/m2		Specific data or Table 6c	Shading	Gains W
South	3.6000	112.2060	0.3600	0.7000	0.9000	82.4526
total:						82.4526
Solar gains Internal gains Total summer gains			Jun 85 214 300	Jul 82 207 289	Aug 81 211 293	(P3) (P5)
Summer gain/loss ratio Summer external temperature			3.46	3.34 17.90	3.38 17.80	(P6)
Thermal mass temperature increment (TMP Threshold temperature Likelihood of high internal temperature			0.00 19.46 significant	0.00 21.24 Slight	0.00 21.18 Slight	(P7)
Assessment of likelihood of high interna			Slight			

Assessment of likelihood of high internal temperature: Slight

Haven Road, Exeter

Energy and Sustainability Statement

Appendix F – DHN Correspondence

Date: 13/07/22 Revision: 002 Ref: 6018-CBC-HM-RP-S-003-P02 Page | 48 of 48

Hasnaat Mahmood

From:	Howard Smith <howard.smith@exeter.gov.uk></howard.smith@exeter.gov.uk>
Sent:	21 October 2021 09:17
То:	Alistair Morgan
Cc:	Emily Perryman; Roger Clotworthy
Subject:	RE: Possible Heating Network, New Development: Haven Road Exeter

Alistair,

There is no current heat network serving that area.

The City Council have undertaken feasibility work regarding heat networks including a network in that area.

We would welcome development proposals that would enable the future connection of heating systems to a low temperature hot water district heating network.

I would be happy to discuss the proposed development and your energy/carbon strategy.

Policies CP13, CP14, and C15 of the Exeter Core Strategy are relevant to this issue: <u>adopted-core-strategy.pdf</u> (<u>exeter.gov.uk</u>)

Regards

Howard

Howard Smith Principal Project Manager (Development)

City Development | Exeter City Council Phone: 01392 265272 Email: <u>howard.smith@exeter.gov.uk</u> Website: <u>www.exeter.gov.uk</u>

From: Roger Clotworthy <roger.clotworthy@exeter.gov.uk>
Sent: 21 October 2021 08:17
To: Howard Smith <howard.smith@exeter.gov.uk>
Cc: Emily Perryman <Emily.Perryman@exeter.gov.uk>
Subject: Fwd: Possible Heating Network, New Development: Haven Road Exeter

Hi Howard,

Are you able to help with this?

Many thanks,

Roger

Roger Clotworthy Assistant Service Lead (Planning) City Development Exeter City Council

01392 265285

Begin forwarded message:

From: Planning <<u>Planning@exeter.gov.uk</u>>
Date: 20 October 2021 at 10:22:54 BST
To: Roger Clotworthy <<u>roger.clotworthy@exeter.gov.uk</u>>
Subject: FW: Possible Heating Network, New Development: Haven Road Exeter

Hello Roger,

Who would be best to answer this enquiry?

Emily

Emily Perryman Project Officer (Planning)

City Development Exeter City Council 01392 265212

From: Alistair Morgan <<u>alistair.morgan@cuddbentley.co.uk</u>>
Sent: 20 October 2021 10:21
To: Planning <<u>Planning@exeter.gov.uk</u>>
Subject: Possible Heating Network, New Development: Haven Road Exeter

Hi there,

I am contacting on behalf of Cudd Bentley Consulting regarding a new Development and whether a connection to a current District Heating Network would be feasible, I couldn't find an email for the local council's energy officer, if this could be forwarded to the right person that would be very helpful.

The build location is, UNIT 3-4 HAVENBANKS RETAIL PARK EXETER EX2 .

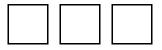
Kind regards, Alistair Morgan Graduate Sustainability Engineer

T: <u>+44 (0)1344 628821</u> <u>F: +44 (0)1344 623448</u> DDI: <u>+44 (0)1344 298805</u> www.cuddbentley.co.uk Head Office Ashurst Manor, Church Lane, Sunninghill, Ascot, Berks, SL5 7DD

Regus, Central Boulevard Blythe Valley Business Park Solihull, West Midlands, B90 8AG

> 12 Devonshire Street, London, W1G 7AB

'Read our brand-new blog here



-- Cudd Bentley Consulting Ltd Confidentiality Notice --

This electronic transmission, including any attachments may contain information which is confidential and may contain legally privileged information. If you are not the intended recipient of this message, any dissemination, copying or action taken in reliance of its contents is strictly prohibited and maybe unlawful. You should not read, copy, disclose or otherwise use this message, except for the purpose of delivery to the addressee. If you have received this message in error, please notify the sender immediately and permanently delete it from your system. Cudd Bentley Consulting Ltd may monitor outgoing and incoming emails and other telecommunications on its email and telecommunications systems; by replying to this email you give your consent to such monitoring. Any views or opinion presented are solely those of the author and do not necessarily represent those for Cudd Bentley Consulting Ltd.

Your privacy is important to us - by responding to this email or emailing an employee of Cudd Bentley Consulting Ltd, your name and contact information may be collected, retained and/or processed by Cudd Bentley for its internal business purposes. Should you wish for this information not to be collected please contact the sender of this email.

Keep up with the latest news here

Cudd Bentley Consulting Ltd Confidentiality Notice

This electronic transmission, including any attachments may contain information which is confidential and may contain legally privileged information. If you are not the intended recipient of this message, any dissemination, copying or action taken in reliance of its contents is strictly prohibited and maybe unlawful. You should not read, copy, disclose or otherwise use this message, except for the purpose of delivery to the addressee. If you have received this message in error, please notify the sender immediately and permanently delete it from your system. Cudd Bentley Consulting Ltd may monitor outgoing and incoming emails and other telecommunications on its email and telecommunications systems; by replying to this email you give your consent to such monitoring. Any views or opinion presented are solely those of the author and do not necessarily represent those for Cudd Bentley Consulting Ltd.

Your privacy is important to us - by responding to this email or emailing an employee of Cudd Bentley Consulting Ltd, your name and contact information may be collected, retained and/or processed by Cudd Bentley for its internal business purposes. Should you wish for this information not to be collected please contact the sender of this email.

See our <u>privacy notice</u> for details on how we manage personal information.

Disclaimer: http://www.exeter.gov.uk/disclaimer